CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

www.papacambridge.com MARK SCHEME for the October/November 2012 series

0654 CO-ORDINATED SCIENCES

0654/33

Paper 3 (Extended Theory), maximum raw mark 120

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

	age 2	Mark Scheme Syllabus	N.
		IGCSE – October/November 2012 0654	30
(a)) (i)	two (complete) sets of/23 pairs/46, chromosomes ;	amp
	(ii)	Mark Scheme Syllabus IGCSE – October/November 2012 0654 two (complete) sets of/23 pairs/46, chromosomes ; fertilisation ;	110
(1-)	· /1\		
(a)) (i)	A ; D ;	[2]
	(ii)	it has petals ; stigma is, enclosed/inside petals/not feathery ; anthers/stamens are, enclosed/inside petals ; so wind cannot reach them/wind cannot blow away pollen ;	10
		so insect must crawl past, anther/stigma (to reach nectar);	[3]
(c)		thod of dispersal (wind, animals, water, self) ; erence to feature of fruit that aids dispersal ;	
		cription of how the feature aids dispersal ;	[3]
			[Total: 10]
(a)) (i)	78(%);	[1]
	(ii)	different boiling points ; gases boil off as their boiling point is reached/gases boil off separately ;	[2]
(b)) (i)	transition ;	[1]
	(ii)	improves (catalyst) efficiency/increases reaction rate ; increases (catalyst) surface area ;	
		reactions occur on catalyst surface ;	[max 2]
	(iii)	nitrogen and hydrogen ;	[1]
	(iv)	idea that conversion of reactants through reactor is incomplete/economic/environmental argument for recycling reactants/reference. to equilibrium/reversible reaction ;	[1]
(c)	(i)	force of attraction between, nuclei/protons, and electrons ; because, opposite electrical/positive and negative, charges (attract) ; energy/work, required to move particles apart against force of attraction ;	[max 2]
	(ii)	idea that (relatively) <u>large</u> amount of energy required (to break bond)/difficult to break bond ;	
		because high force of attraction ; because, many/3 pairs/6, shared electrons/electrons in the bond,/idea that bond is a <u>large</u> negative charge ;	[max 2
		bond is a <u>large</u> negative charge,	Lunax E

Pa	ge 3			Mark Scheme		Syllabus	N S
			IGCSE – C	October/Novemb	per 2012	0654	1000
(a)			ant/steady, spee eration ;	d/velocity ;			www.papacampric
(b)	(wo	rk doı	= 20 × 90 =) 1800 le =) force × dista 1800 = 1800 000	ince;			[3
(c)	(i)		leration =) <u>chang</u> /s ² ;	<u>e in</u> speed ÷ time	e = 33/11 ;		[2
	(ii)		e =) mass × accel) × 3 = 2850 N ;	eration ;			[2
((iii)		aster a car goes th atually) air resistai	-			[2
							[Total: 10
(a)	(i)	any i	umber above 20	000 <u>Hz</u> ;			[1
	(ii)	longi	udinal ;				[1
(b)	(i)		drinking attempts f figures/almost i		•		[2
	(ii)	soun scatt	ence to water hav d waves scatter ered in many dire- receive fewer ech ce :	red in many di ctions from a smo	irections from a ooth surface ;	-	
			reasonable expla	anation ;			[max 2
(c)	(i)	beca so m and	s with the, genes, use they are less oths with the, gen bass their genes to time/over ma	likely to be killed nes/behaviour, ar o their offspring ;	by bats ; re more likely to r	reproduce ;	e the,
		gene	s/behaviour ;				[max 4
	(ii)	to the	l along sensory ne central nervous	system/brain ;			
			<u>l along</u> motor neu ıscles ;	IONE,			[max 3
							[Total: 13]

Pa	ige 4	ŀ	Mark Scheme Syllabus	i o r
			IGCSE – October/November 2012 0654	1230
(a)	(i)		separated ; omly spread throughout the solution ;	ambrio
	(ii)	calci sodi	Il atoms form ions by losing (outer shell) electrons ; um ions have 2 more protons than there are electrons ; um ions have 1 more proton than there are electrons ; ept numerical answers based on atomic numbers)	MANAN, Danas Cambridge [max 2]
(b)	(i)		ulates <i>M</i> _r of BaSO ₄ as 137 + 32 + (16 × 4) = 233 ; ulates moles as 4.66 ÷ 233 = 0.02 ;	[2]
	(ii)		s/implies that 0.02 moles magnesium sulfate in original solution ; lates mass of 0.02 moles MgSO ₄ as 120 × 0.02 = 2.4 g ;	[2]
				[Total: 8]
(a)	(i)		nating current/owtte ; h changes 50 times per second ;	[2]
	(ii)		er = voltage x current/(I =) P/V ; ent = 2000 ÷ 250 = 8 A ;	[2]
(b)	(i)	more	cles separate/escape ; e energetic particles escape (from surface) ; to overcome attractive forces of other particles ;	[max 2]
	(ii)	parti vibra	luction ; cles nearest heater (element) gain energy and vibrate more ; tions/heat/energy, passed from particle to particle along the met ence to energy passing via mobile electrons ;	al ; [max 2]
(c)			particles touching in regular arrangement ; s most particles touching in random arrangement ;	[2]
(d)	= 3	× 420	=) mass × shc × <u>change in</u> temperature ; 00 × 40 ;	
	= 5	04 00) J ;	[3] [Total: 13]
				[
(a)	(i)	amy	ase ;	[1]
	(ii)	mou	th/salivary glands/pancreas ;	[1]
(b)	(i)		rb amino acids ; rb glucoso :	
			rb glucose ; h dissolve in blood (plasma) ;	[max 2

				43.34	
P	age 5		Mark Scheme	Syllabus	
		IGCSE	- October/November 2012	0654	200
	(ii)	absorb, fats/fatty ac	sids/glycerol;		amb
	(iii)	increase surface are increase rate of abs			abaCambrid
(c)	cha	en up by liver <u>cells</u> ; anged to glycogen ; /cogen) stored ;			[max 2
					[Total: 9]
(a)	incl ide res	uding some with a dif	cked regular pattern of spheres ; ferent diameter disrupting struct d atoms make it more difficult	ure ;	ו [max 3]
(b)) Cu	$_2$ S + O ₂ \rightarrow 2Cu +	SO ₂ ;		[1]
(c)) (i)	copper sulfate ;			[1]
	(ii)	(some copper from) at anode $Cu \rightarrow Cu$ copper has deposite at cathode Cu^{2+} (+	ed on the cathode ;		[max 2]
	(iii)		ade the anode ;) deposit on/ions discharge at, tl re not deposited/owtte ;	he cathode/owtte ;	[max 2]
					[Total: 9]
(a)		ns atoms into ions/ch noval of electrons ;	arged particles, / atoms become	charged ;	[2]
(b)		ays can damage cells een stops X-rays pas			[2]
(c)) (3 :	< 10 ⁸ m/s) because a	ll <u>electromagnetic</u> waves travel a	at same speed ;	[1]

	ge 6	Mark Scheme Syllabus	
		IGCSE – October/November 2012 0654	100
(d)			www.PapaCambridge.com
•		not dangerous	Stick
ſ			Se.C.
	α (alp	ona)	9
ļ		stopped by paper	
	β (be	eta)	
L,		least ionising	
	γ(gam		
ļ	1.3		
		travels up to 1 metre in air	
	all three	correct two marks, two correct one mark ;;	[2]
		CONECTION MAINS, TWO CONECTONS MAIN,	
			[Total: 7]
	aunione	al detail about xylem in root/stem/leaf;	
	to mesor	phyll cells in leaves ;	[max 3]
	(i) to m	phyll cells in leaves ; nake amino acids/DNA ;	[max 3]
	(i) to m to m	phyll cells in leaves ;	[max 3] [max 2]
(b)	(i) to m to m for g	phyll cells in leaves ; nake amino acids/DNA ; nake proteins ; growth/to build cells/to make enzymes ;	
(b)	(i) to m to m for g (ii) no o wate	phyll cells in leaves ; nake amino acids/DNA ; nake proteins ; growth/to build cells/to make enzymes ; osmosis (into roots) ; er potential outside lower than water potential inside / water cond	[max 2]
(b)	 (i) to m to m for g (ii) no o wate outs high 	phyll cells in leaves ; nake amino acids/DNA ; nake proteins ; growth/to build cells/to make enzymes ; osmosis (into roots) ; er potential outside lower than water potential inside / water cond side lower than water concentration, inside / ion concentration her than ion concentration inside ;	[max 2] centration n outside
(b)	 (i) to m to m for g (ii) no o wate outs high 	phyll cells in leaves ; nake amino acids/DNA ; nake proteins ; growth/to build cells/to make enzymes ; osmosis (into roots) ; er potential outside lower than water potential inside / water cond side lower than water concentration, inside / ion concentration	[max 2] centration n outside
(b) ((i) to m to m for g (ii) no o wate outs high beca iii) fertil 	phyll cells in leaves ; nake amino acids/DNA ; nake proteins ; growth/to build cells/to make enzymes ; osmosis (into roots) ; er potential outside lower than water potential inside / water cond side lower than water concentration, inside / ion concentration her than ion concentration inside ; ause high concentration of (dissolved) ions reduces water potent	[max 2] centration n outside
(b) ((i) to m to m for g (ii) no o wate outs high beca iii) fertil whice 	phyll cells in leaves ; nake amino acids/DNA ; nake proteins ; growth/to build cells/to make enzymes ; osmosis (into roots) ; er potential outside lower than water potential inside / water cond side lower than water concentration, inside / ion concentration her than ion concentration inside ; ause high concentration of (dissolved) ions reduces water potent	[max 2] centration n outside tial ; [max 2]
(b) ((i) to m to m for g (ii) no o wate outs high beca iii) fertil whic bact bact 	phyll cells in leaves ; hake amino acids/DNA ; hake proteins ; growth/to build cells/to make enzymes ; bsmosis (into roots) ; er potential outside lower than water potential inside / water conc side lower than water concentration, inside / ion concentration her than ion concentration inside ; ause high concentration of (dissolved) ions reduces water potent liser causes growth of, algae/plants ; ch, shade out other plants/die/decompose/decay ; teria, feed on/decompose, dead plants/increase in bacterial growteria use oxygen (for respiration) ;	[max 2] centration n outside tial ; [max 2] wth ;
(b) ((i) to m to m for g (ii) no o wate outs high beca iii) fertil whic bact bact 	phyll cells in leaves ; hake amino acids/DNA ; hake proteins ; growth/to build cells/to make enzymes ; bsmosis (into roots) ; er potential outside lower than water potential inside / water conc side lower than water concentration, inside / ion concentration her than ion concentration inside ; ause high concentration of (dissolved) ions reduces water potent liser causes growth of, algae/plants ; ch, shade out other plants/die/decompose/decay ; teria, feed on/decompose, dead plants/increase in bacterial growth	[max 2] centration n outside tial ; [max 2] wth ; [max 3]
(b) ((i) to m to m for g (ii) no o wate outs high beca iii) fertil whic bact bact 	phyll cells in leaves ; hake amino acids/DNA ; hake proteins ; growth/to build cells/to make enzymes ; bsmosis (into roots) ; er potential outside lower than water potential inside / water conc side lower than water concentration, inside / ion concentration her than ion concentration inside ; ause high concentration of (dissolved) ions reduces water potent liser causes growth of, algae/plants ; ch, shade out other plants/die/decompose/decay ; teria, feed on/decompose, dead plants/increase in bacterial growteria use oxygen (for respiration) ;	[max 2] centration n outside tial ; [max 2] wth ;
(b) ((i	 (i) to m to m for g (ii) no o wate outs high beca iii) fertil whice bact fish o 	phyll cells in leaves ; hake amino acids/DNA ; hake proteins ; growth/to build cells/to make enzymes ; besmosis (into roots) ; er potential outside lower than water potential inside / water conc side lower than water concentration, inside / ion concentration her than ion concentration inside ; ause high concentration of (dissolved) ions reduces water potent liser causes growth of, algae/plants ; ch, shade out other plants/die/decompose/decay ; teria, feed on/decompose, dead plants/increase in bacterial gro teria use oxygen (for respiration) ; die from lack of oxygen ;	[max 2] centration n outside tial ; [max 2] wth ; [max 3]
(b) ((i	 (i) to m to m for g (ii) no o wate outs high beca iii) fertil whic bact fish o 	phyll cells in leaves ; hake amino acids/DNA ; hake proteins ; growth/to build cells/to make enzymes ; bsmosis (into roots) ; er potential outside lower than water potential inside / water conc side lower than water concentration, inside / ion concentration her than ion concentration inside ; ause high concentration of (dissolved) ions reduces water potent liser causes growth of, algae/plants ; ch, shade out other plants/die/decompose/decay ; teria, feed on/decompose, dead plants/increase in bacterial growteria use oxygen (for respiration) ;	[max 2] centration n outside tial ; [max 2] wth ; [max 3]

(b) diamond very hard and graphite softer/flaky;

N.	Syllabus	Mark Scheme	ge 7
20	0654	- October/November 2012	
Cambro	sional array/all atoms easonable attempt at s)/reasonable attempt sional array/all atoms easonable attempt at	all interconnected in three dimer ure/one huge macromolecule/n very strong ; rs (of hexagonally bonded C atom n layers (allows layers to slide) ; <u>and</u> graphite good conductor ; all interconnected in three dimer ure/one huge macromolecule/ bonds ;	bonded int diagram; all bonds in graphite arr at diagram; only weak for OR diamond por diamond ha bonded int diagram; all (valence
	s)/reasonable allempt	rs (of hexagonally bonded C aton	at diagram
[max 4]			free electroi (reject refer
[2]	1+2;	aturated / fits general formula C_2H_2	(i) alkanes only sir
	linked to greenhouse	roduce carbon dioxide which is	(ii) gasolin
	nonoxide/other named	e ; oduce pollutants such as carbon :	effect/o
	nonoxide/ other named	ve adverse effects on health);	pollutar
[3		luct is (non-polluting) water ;	hydroge
[Total: 11]	I		
		nto steam/heats CO_2 ;	heat energy
[2	or) ;	ives turbine (which drives generat	•••
	oil/direction of current	reversed/slips rings rotate with	slip rings ; coil connec reverses as
[max 2		id wires twisting ;	
			(i) Vp/Vs
		00/25000;	Ns = 40
[3			= 6400
[1	only work with a.c. ;	rs to change voltage/transformer	(ii) to enab
[Total: 8			