

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** questions. A copy of the Periodic Table is printed on page 32.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part

question.

For Examiner's Use		
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		
Total		

This document consists of 29 printed pages and 3 blank pages.

(a) Complete Table 1.1 by choosing one of the words from the list to match 1 statement.

				42	
		2		AN. Day	
omplete Table atement.	e 1.1 by choosin	g one of the w	vords from the lis	st to match	Anno For iner's
ammeter	ampere	circuit	coulomb	electron	Tigge C
ohm	relay	volt	voltmeter	watt	OTH

Table 1.1

statement	word
a complete loop of conductors	
the unit of electrical charge	
an instrument that measures potential difference	
a device used in switching on circuits	

[2]

(b) Fig. 1.1 shows two circuits **A** and **B**. All the lamps and both cells are the same.

(i) One lamp is unscrewed from circuit A.

State what happens to the other lamp.

Explain your answer.

..... [1]

	122
	3
(ii)	Explain why lights in a house are connected in parallel and not in series.
	[2]
(iii)	The resistance of each lamp is 1.2Ω .
	Calculate the combined resistance of the two lamps in circuit B .
	State the formula that you use and show your working.
	formula used
	working
	working

[3]

BLANK PAGE

(c) In Florida, USA, some people collect earthworms by vibrating the soil.

A wooden post is pushed into the ground, and then a heavy object is pulled across the top of the post to make it vibrate. The vibrations travel through the soil.

www.papaCambridge.com Earthworms respond to the vibrations by crawling out of their burrows onto the soil surface, where they can be caught.

A student investigated the effect of different frequencies of vibrations on the numbers of earthworms that emerged from the soil. Fig. 2.2 shows his results.

Fig. 2.2

	4
	12
(i)	Describe the effect of different frequencies of vibrations on the number of earthworms emerging.
	[2]
(ii)	Moles are predators that live underground and eat earthworms. When moles burrow through the ground, they produce vibrations of around 500 Hz.
	The response of earthworms to vibrations is controlled by their genes.
	Suggest how natural selection may have caused the response of earthworms to vibrations to evolve.
	[4]

8

(a) Fig. 3.1 shows how a digital pH meter is used to measure the pH of some liquids 3

Fig. 3.1

(i) Complete Table 3.1 by suggesting suitable pH values for the different liquids.

Table 3.1	
-----------	--

liquid	рН
water	7.0
sodium hydroxide solution	
dilute sulfuric acid	

[1]

(ii) Suggest one advantage of using a digital pH meter rather than a piece of litmus paper to assess the acidity of an aqueous solution.

.....[1] (iii) Dilute acids are aqueous solutions that contain dissolved ions.

Table 3.2

4
9
lute acids are aqueous solutions that contain dissolved ions.
able 3.2 shows the names of the ions in two common acids.
Table 3.2
name of dilute acid names of dissolved ions
name of dilute acidnames of dissolved ionshydrochloric acidhydrogen ions and chloride ions

A student is given an unlabelled beaker which is known to contain either dilute hydrochloric acid or dilute sulfuric acid.

Describe a chemical test that a student could use to find out which acid the beaker contains.

..... [2]

- (b) When a reactive metal is added to a dilute acid, the metal reacts and dissolves and hydrogen gas is given off.
 - (i) When magnesium reacts with dilute hydrochloric acid, magnesium atoms are oxidised by hydrogen ions.

The balanced ionic equation for this redox reaction is shown below.

 $Mg(s) + 2H^{+}(aq) \longrightarrow Mg^{2+}(aq) + H_2(g)$

Explain, in terms of the transfer of electrons, why this reaction is described as redox.

..... [2] (ii) Unreactive metals do not react in dilute acid.

A student is given a mixture of powdered magnesium and powdered copper.

www.papacambridge.com Describe and explain how the student could use dilute hydrochloric acid and usual laboratory apparatus to obtain a sample of copper from this mixture.

mixture of powdered — magnesium and powdered copper	dilute hydrochloric acid
,	
	 [3]

4 (a) An athlete of mass 60 kg jumps 1.3 metres vertically.

Calculate the work done by the athlete to achieve this height.

State the formula that you use and show your working. The gravitational field strength of the Earth is 10 N/kg.

formula used

working

[3]

www.papacambridge.com

- (b) Using your answer to part (a), state the gain in potential energy of the athlete when he jumps 1.3 metres.
 -[1]
- (c) The work done in jumping vertically was completed in 0.5s.

Calculate the power developed.

State the formula that you use and show your working.

formula used

working

[2]

BLANK PAGE

Fig. 5.1 shows apparatus that can be used to measure the rate of respiration of germ 5 seeds.

Fig. 5.1

The soda lime absorbs carbon dioxide from the air inside the apparatus.

- (a) As the seeds respire, they use oxygen. This reduces the volume of gas inside the apparatus. The faster they respire, the faster the red liquid moves towards the left.
 - (i) Write the balanced equation for aerobic respiration.

[2] (ii) Use the equation to explain why the liquid would not move if there was no soda lime in the apparatus. [2] (b) An experiment was carried out to investigate the effect of temperature on the respiration of the germinating seeds.

www.papaCambridge.com Four sets of the apparatus shown in Fig. 5.1 were set up and labelled A, B, C and D. Each set of apparatus contained either germinating or dead seeds.

The distance moved by the red liquid in five minutes was measured for each set.

The results are shown in Table 5.1.

set	contents	temperature/°C	distance moved by red liquid in 5 minutes / mm
Α	germinating seeds	0	3
В	germinating seeds	10	6
С	germinating seeds	20	12
D	dead seeds	20	0

Table 5.1

(i) Explain why it was important to include set **D** in the experiment.

.....[1] (ii) Suggest why the liquid may have moved very slightly in set **D**.[1] (iii) With reference to Table 5.1, describe the effect of temperature on the rate of respiration of germinating seeds. [2]

- www.papacambridge.com Some types of firework are made by filling a cardboard tube with firework mixture. 6 mixture is made from several solid substances which have been powdered and m together.
 - Fig. 6.1 shows a typical firework.

Fig. 6.1

When the paper fuse is lit, exothermic chemical reactions occur inside the firework.

(a) Explain, in terms of rate of reaction, why firework mixture is a powder.

[2]

(b) Some firework mixtures contain aluminium which is oxidised to produce aluminium oxide.

When aluminium is oxidised, aluminium atoms are converted into aluminium ions.

(i) The electron configuration of an aluminium atom is 2,8,3.

Explain why the electrical charge of an aluminium ion is +3.

..... [2]

www.papaCambridge.com (ii) A student suggested the symbolic equation below for the formation of alun oxide.

```
2Al +
         3O_2 \longrightarrow Al_2O_3
```

State and explain whether or not this equation is balanced.

[2]

(c) The firework mixture contained in the firework in Fig. 6.1 contains the compound potassium perchlorate, KClO₄.

When potassium perchlorate is heated, a colourless gas is given off which re-lights a glowing splint.

Suggest why the firework mixture needs to contain potassium perchlorate.

_____ [2]

- 7 (a) State which type of electromagnetic wave
 For iner's

 (i) can be detected by the human eye,
 [1]

 (ii) is used in a remote control for a television,
 [1]

 (iii) is strongly absorbed by the water in cells.
 [1]
 - (b) Three types of nuclear radiation are alpha, beta and gamma. Each of these can be identified by its behaviour in electric and magnetic fields.

Describe how you could identify alpha, beta and gamma radiations by their deflections in an electric field.

Explain your answer. You may use a diagram to help your explanation.

 [5]

		4222		
		19		
(c)	ln a proo	a nuclear power station, nuclear fuel such as uranium releases energy cess of nuclear fission.	Cant	For iner's
	(i)	State what happens to the uranium atoms.	[1]	decon
	(ii)	At a nuclear power station, technicians work close to radioactive sources.		
		State one way in which these workers could be harmed by radiation emitted for radioactive sources.	rom	
			[1]	
	(iii)	State two ways in which these workers could be protected from the radiation.		
		1		
		2	[2]	

www.papaCambridge.com 20 Fig. 8.1 shows the male reproductive system. R С Fig. 8.1 (a) (i) State the functions of parts A, B and C. Α _____ B _____ C [3] (ii) On Fig. 8.1, use a label line and the letter S to indicate where male gametes are made. [1] (b) Describe three ways in which human male gametes differ from human female gametes. 1 2 3 [3] (c) Male gametes and female gametes have a haploid nucleus. Explain why it is important that gametes have a haploid nucleus. [2]

8

	21	
(d)	HIV is the virus that causes AIDS. HIV can be passed from one person to during sexual intercourse.	For viner's
	Outline how HIV affects the immune system of a person with HIV/AIDS.	hidde.
		OTH

[2]

BLANK PAGE

www.papaCambridge.com 9 In 1774 the chemist Carl Scheele reacted concentrated hydrochloric acid with many dioxide. One of the products of this reaction was a pale green gas which Scheele belie to be a compound containing oxygen.

All attempts by Scheele and other chemists to decompose this green gas were unsuccessful. In 1810 the green gas was named chlorine.

(a) Explain which information in the passage above suggests that chlorine is an element.

[2]

(b) Chlorine is produced in the chemical industry by electrolysis.

A simplified diagram of one type of electrolysis cell used to produce chlorine is shown in Fig. 9.1.

(i) Name substances **X**, **Y** and **Z** in Fig. 9.1.

Χ Υ _____ Z _____ (ii) Fig. 9.2 shows how the electrons are arranged in a chlorine atom.

Fig. 9.2

In chlorine gas, the atoms form molecules which have the formula, Cl₂.

Draw a diagram to show how the **outer** electrons are arranged in a molecule of chlorine.

[2]

www.papaCambridge.com

(c) A student plans to produce some chlorine gas by repeating the reaction used by Scheele. She researches the balanced symbolic equation for the reaction and finds that it is

 $4HCl(aq) + MnO_2(s) \longrightarrow MnCl_2(aq) + 2H_2O(l) + Cl_2(g).$

The student decides to react 1.74g of manganese dioxide with excess hydrochloric acid.

(i) Calculate the number of moles of manganese dioxide in 1.74 g.

Show your working.

[2]

(ii) Calculate the volume of chlorine gas, measured at room temperature pressure, which the student might expect to be produced in her experiment.

www.papacambridge.com The volume of one mole of chlorine, measured at room temperature and pressure, is 24 dm³.

Show your working.

[3]

10 (a) On the grid below, draw a wave with an amplitude of 2 cm and a wavelength of 4 On your diagram, clearly label the amplitude and the wavelength.

																																2	5				
																		26	;														2.	00	0		
Or	ר t	the	e g	gric	d b	el	ow	', C	dra	w	a	wa	ave	e w	/ith	ı a	n a	am	pli	tuc	de	of	20	cm	a	nd	а	Wa	ave	ler	ngt	h d	of 4	V	0	Co	For
Or	۱y	yo	ur	di	ag	ra	m,	cl	ea	rly	/ la	abe	el t	he	e a	mp	olitu	Jde	e a	anc	d tl	he	wa	av	ele	eng	gth										⁷ Bria
																																					300
													П	П						Π					Т			Π	П					П	П	\square	0
																																					2
\vdash		+	\vdash	$\left \right $			\square	-	\square	+		\vdash	\square	++	\square				+	++	+	+	+	+	+	+	+	++	++		++	+	++	++	++	$\left \cdot \right $	
		+																		++	+							++									
		+	\square				\square					\square							+		+		+		+						+			+		$\left \right $	
H	\vdash	+	\vdash	$\left \right $		\vdash	$\left \right $	-	H	\vdash		\vdash	++	++	\square		$\left \right $	+	+	++	+	+	+	+	+	+	+	++	++	$\left \cdot \right $	+	+	++	+	++	$\left \right $	
								-		Ŧ		\square	H	H	H			\square		\square	\square			H		H		\square	\square		\square			H	H	\square	
\vdash		+	$\left + \right $	$\left \right $	++		++	+	$\left \right $	+		++	++						++	++	+	+	++	+	++	+		++			+	++		++	++	++	
ΗJ	\square	+1	\square		\square	\square	\square		\square	\square	\square	H^{-}	\mathbb{H}^{-}	\mathbb{H}^{-}	H^{-}	\square		+1	+ 1	+ 1	+1	+	+	+ 1	+ 1	H	+1	+ 1	++	H	+	$+\top$	++	H^{-}	++	HΗ	
HH	\vdash	+	\vdash	$\left \right $		\vdash			\vdash	+		++	++		++					+	+										+	+		++	++	\square	
\square		+						-		-		\square	\square					+	+	++	+	+	+	++	++	+		++	++		+	+	++	++	+	$\left \right $	
\vdash		+	\vdash	$\left \right $			$\left \right $	+	$\left \right $	+		++	++					++	+	++	++	+	+	+	++	+		++	++		+	++	++	++	++	$\left \right $	
\vdash	\square	+						-	\square	\vdash		\square	++	++	\square					++	+				++	+		++	++	\square	+	++	++	++	++	\square	
H		+	$\left \right $	$\left \right $			$\left \right $		H			+	++				$\left \right $	+	+	+		+	+	+			+	+			+	+		+	++	$\left \right $	
H		+										\square	\square	\square				+1	+	+	+	+	+	+	+	+	+	+			+ 1	+		++	++	\square	
H	\vdash	+	\vdash	$\left + \right $	$\left \right $	\vdash	++	+	H	+		++	++	++	++		$\left \right $		++	++	+	+	++	++	++	+	+	++	++-		+	++	++	++	++	$\left \right $	
\square		+								\square		\square	\square					+	+	++	+	++	+	++	++	+	+	++	++		+	++	++	++	$\left \right $	\square	
\vdash								-	$\left \right $	+						\vdash			+				+		+			++				+				$\left \right $	

[3]

(b) (i) Two sound waves, A and B, have the same frequency. A has a greater amplitude than **B**.

What difference would you hear?

......[1]

(ii) Two sound waves, X and Y, have the same amplitude but X has a greater frequency than Y.

What difference would you hear?

[1]

www.papaCambridge.com (iii) The speed of sound was calculated for sound passing through a solid, a gas and a vacuum.

The values recorded were

0m/s	330m/s
1500m/s	5000m/s.

Write the values in the correct boxes in Table 10.1.

Table	10	.1
-------	----	----

	speed of sound m/s
vacuum	
solid	
liquid	
gas	

[2]

(iv) Sound travels through the air by a series of compressions and rarefactions.

Explain what is meant by compressions and rarefactions. You may use a diagram to help your explanation.

..... [2]

		29	
11	Цт	mans require a wide range of nutrients to provide a balanced dist	
	(a)	List two groups of organic substances that humans require in their diet.	For
		1	.9e.C
		2 [2]	
	(b)	Outline the symptoms that a person may develop if their diet is deficient in	
		(i) vitamin D,	
		[1]	
		(ii) iron[1]	
	(-)		
	(C)	Describe the use of microorganisms in the manufacture of yognurt.	
		[3]	

(b) Fig. 12.1 shows apparatus that a student uses to investigate what happens when gaseous decane, $C_{10}H_{22}$, is heated in the presence of a catalyst.

The catalyst is made of small pieces of aluminium oxide which are heated strongly.

Fig. 12.1

When the gaseous decane passes through the heated catalyst, the solution of bromine rapidly changes colour from orange to colourless.

- (c) When ethene, C₂H₄, is heated and pressurised in the presence of a catalyst, it is converted into a white compound which becomes solid when it cools.
 - (i) Complete the diagram below to show a small section of one of the molecules in the white solid.

(ii) Suggest why it is **not** possible to state an exact value of the relative molecular mass of the molecules in the white solid.

[1]

[2]

סגס University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of

ublisher will be pleased to make amends at the earliest possible opportunity.	easonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been include	ermission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible.
	cluded, the	ible. Every

Ш

9

Be

Beryllium

24

Mg

Magnesium

40

Са

Calcium

88

Sr

Strontium

137

Ва

Barium

226

Ra

Radium

45

Sc

Scandium

89

Υ

Yttrium

139

La

Lanthanum

227

Ac

Actinium

t

a = relative atomic mass

b = proton (atomic) number

X = atomic symbol

21

39

57

89

48

Ti

Titanium

91

Zr

Zirconium

178

Hf

Hafnium

22

40

72

Vanadium

Niobium

Tantalum

Cerium 58

90

23

41

73

4

12

20

38

56

. 88

*58-71 Lanthanoid series

†90-103 Actinoid series

а

Х

b

1

7

Li

Lithium

23

Na

Sodium

39

Κ

Potassium

85

Rb

Rubidium

133

Cs

Caesium

Fr

Francium

3

11

19

37

55

87

Key

ublish	ason	ermis
er will	able e	sion 1
l be p	offort	to rep
lease	has b	produc
d to n	een m	ce ite
nake a	nade	ms w
ameno	by the	here
ds at t	9 publ	third-
he ea	isher	party
rliest	(UCL	owne
possi	ES) to	eu p:
ble op	o trac	iterial
portu	e cop	prote
nity.	yright	cted
	holde	by co
	irs, bu	pyrig
	ıt if ar	nt is
	лу iter	includ
	ns re	ed ha
	quirin	as be
	g clea	en sc
	rance	ught
	have	and o
	unwi	cleare
	ttingly	d whe
	' beer	ere po
	1 inclu	ossible
	ided,	e. Ev
	Ę	9

			The Pe				ents						
				Gr	oup				1	1	T	1	1
				1					IV	V	VI	VII	0
			1 H Hydrogen 1										4 He Helium
								11 B Boron	12 C Carbon	14 N Nitrogen	16 O Oxygen	19 F Fluorine	20 Ne Neon
								27 Aluminium 13	28 Si Silicon	31 P Phosphorus 15	32 S Sulfur 16	35.5 C1 Chlorine	40 Ar Argon 18
51 V /anadium	52 Cr Chromium 24	55 Mn Manganese 25	56 Fe Iron 26	59 Co Cobalt 27	59 Ni ^{Nickel} 28	64 Cu Copper 29	65 Zn Zinc 30	70 Ga Gallium 31	73 Ge Germanium 32	75 As Arsenic 33	79 Se Selenium 34	80 Br Bromine 35	84 Kr Krypton 36
93 Nb Niobium	96 Mo Molybdenum 42	Tc Technetium 43	101 Ru Ruthenium 44	103 Rh Rhodium 45	106 Pd Palladium 46	108 Ag Silver 47	112 Cd Cadmium 48	115 I n Indium 49	119 Sn 50	122 Sb Antimony 51	128 Te Tellurium 52	127 lodine 53	131 Xe Xenon 54
181 Ta Tantalum	184 W ^{Tungsten} 74	186 Re Rhenium 75	190 OS Osmium 76	192 I r Iridium 77	195 Pt Platinum 78	197 Au _{Gold} 79	201 Hg Mercury 80	204 T I Thallium 81	207 Pb Lead 82	209 Bi ^{Bismuth} 83	Polonium 84	At Astatine 85	Rn Radon 86
140 Ce Cerium	141 Pr Praseodymium 59	144 Nd Neodymium 60	Pm Promethium 61	150 Samarium 62	152 Eu Europium 63	157 Gd Gadolinium 64	159 Tb Terbium 65	162 Dy Dysprosium 66	165 Ho Holmium 67	167 Er Erbium 68	169 Tm Thulium 69	173 Yb Ytterbium 70	175 Lu Lutetium 71
232 Th Thorium	Pa Protactinium 91	238 U Uranium 92	Np Neptunium 93	Pu Plutonium 94	Am Americium 95	Cm Curium 96	Bk Berkelium 97	Cf Californium 98	ES Einsteinium 99	Fermium 100	Md Mendelevium 101	No Nobelium	Lawrencium 103
The v	olume of	one mole	of any ga	as is 24 di	m ³ at root	m temper	ature and	l pressure	e (r.t.p.).			100:30	phome

DATA SHEET The Deviadie Table of the Elements