CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the October/November 2013 series

0654 CO-ORDINATED SCIENCES

0654/63 Paper 6 (Alternative to Practical), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

			IGCSE – October/November 2013	0654	63	
1 (a)	(a) sensible scale on y-axis, 20 °C or 25 °C per 5 squares, labelled time/at least 4 out of 5 accurate plots, $\pm1/2$ square; smooth best fit curve between 1% and 5% IGNORE outside this range.				[3]	
(b)	so	(time at) 2%/ B (is short,)/(time at) 3%/ C (is too long,) AND because of wrong solution or dilution/volume/difficulty with end-point/variation in temperature/variability of biological material;				
(c)) an	y estin	nate of less than 20 secs ;		[1]	
(d)	(d) (i) repeat using different temperatures/heat the mixture; water bath mentioned/at least four different temperatures; keep urease concentration/%age constant;			[3]		
	(ii)	• .	h with temperature on horizontal axis, time on vertice shows decrease then increase;	cal axis IGNORE	unit ;	
		grap	h with temperature on horizontal axis, rate on vertic shows increase then decrease;	al axis IGNORE (units ; [max 2]	
					[Total: 10]	
2 (a)) (i)	1.2 (a 2.3 (a 6.5 ([3]	
	(ii)		1.2 = 5.4 (ohms) (ecf) (accept any number of deciment be correct);	nal places BUT ro	ounding [1]	
	(iii)	6.5/2	2.3 = 2.8 (ohms) (ecf);		[1]	
(b)	6.5	5/0.75	= 8.67 (ecf);		[1]	
(c)	(c) 5.4 + 2.8 = 8.2 and 8.67 (ecf);					
	OF	either: 8.2 to 8.67 similar so within experimental error; OR 8.2 different to 8.67 and a reason for this e.g. variability of equipment such as different wires/different meters ignore pupil error e.g. read the meter wrong; [max.com/max.co				
(d)) (i)	lamp	X is less bright than Y (or lamp Y is brighter than X	();	[1]	
	(ii)	lamp	os in Fig. 2.3/series are less bright than in Fig. 2.1/	parallel, owtte ;	[1]	

Mark Scheme

Paper

[Total: 10]

Syllabus

Page 2

			IGCSE – October/November 2013	0654	63	
(a)	26.5 27.5 26.8	5;	tolerance		[3]	
(b)	(i)	8.5,	8(.0) 8.3 (ecf);		[1]	
	(ii)	exotl	hermic because there was a temperature rise/heat	was given out ;	[1]	
(c)			e volume/amount/concentration of alkali/OH wass/amount of water was formed each time;	as used each ti	me/the [1]	
(d)	the t					
	faster reaction; smaller heat loss; [max 2					
(e)	obse	ervati	test solution: silver nitrate (accept AgNO ₃)/lead nitrion: white precipitate/solid/deposit/sediment (both tion dependent on the correct reagent)			
(a)	(i)	incre	eases then decreases ;		[1]	
	` '		reases and increases/increasing and decreasing eases in the light;	/increases in da	ark and [1]	
(photo	bon dioxide) decreases during (the day due cosynthesis; bon dioxide) increases during (the night due to plant		it for) [2]	
(b)	(i)	lette	r X drawn on steepest part of the ascendant curve ;		[1]	
	(ii)	(oxy	gen taken in due to) respiration (by the plant);		[1]	
(lar line to that provided but values generally lower ve the existing line;	no part of the lir	ne goes [1]	

Mark Scheme

Syllabus

Paper

Page 3

3

4

	Page 4			Mark Scheme	Syllabus	Paper	
				IGCSE – October/November 2013	0654	63	
						[max 3]	
						[Total: 10]	
5	(a)	(i)	mea	suring cylinder, spatula/spoon, stirring rod (any 2)		[2]	
		(ii) mixture stops bubbling; magnesium carbonate added does not dissolve/solution is cloudy/solid in beaker;					
	(b) diagram shows filter funnel and paper, beaker/collecting vessel; two relevant and correct labels;				[2]		
	(c)	(i)	(hea	porate; at/boil) to concentrate/saturate/to crystalisation poir e to cool; aporating to dryness scores max 1 mark)	nt ;	[3]	
		(ii)	susp	pend a crystal in (saturated) solution, owtte ;		[1]	
						[Total: 10]	
6	(a)	(i)	refle scre	octed beams are parallel; octed beams are at 30° to the mirror at point of inc en should lie within the reflected beam); cruler used 1 max)	idence (the line la	abelling [2]	
		(ii)	angl	e of incidence = angle of reflection ;		[1]	
	(b)		•	ines drawn (no mark) between the points where the lines hit the screen =	: 2.0 cm (± 0.2 cm)); [1]	

Page 5	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2013	0654	63

(c) (i) at least 1 beam bent towards the normal (and not beyond) on entering block;

beams inside the block are parallel;

at least 1 beam bent away from the normal as it leaves the block;

beams leaving the block are parallel to each other;

beams leaving the block are parallel to incident rays;

[max 4]

(any four points)

If no ruler lines must be straight

(ii) line drawn at 90° to block; both angles correctly labelled;

[2]

[Total: 10]