UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

www.papacambridge.com MARK SCHEME for the October/November 2009 question paper

for the guidance of teachers

0654 CO-ORDINATED SCIENCES

0654/03

Paper 3 (Extended Theory), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	the second	
ige 2	Mark Scheme: Teachers' version Syllabus	er
	IGCSE – October/November 2009 0654	Do.
ang	es approx correct ; es of incidence and reflection correctly labelled ; w on reflected ray and straight lines ;	abaCambidge.com
(i)	violet / blue / indigo ;	[1]
(ii)	different wavelengths (frequencies);	[1]
		[Total: 5]
to m	ake, ammonium / nitrogen compounds; (ignore nitrates)	[max 2]
or c bree sele		
repe	at over many generations ;	[max 4]
(i)	Dunfield ;	[1]
(ii)	Mandarin ;	[1]
(iii)	so more production of, carbohydrates / named carbohydrate /materials for ma	aking cells ; [max 2]
(iv)		[max 2]
	angl arrov (i) (ii) bact to m fixed choc or ch bree selev repe (i) (ii) (iii) (iii)	 (ii) different wavelengths (frequencies); bacteria / <i>Rhizobium</i>, use nitrogen (from the air); to make, ammonium / nitrogen compounds; (ignore nitrates) fixed nitrogen / nitrogen compound, used for making, amino acids / proteins; choose, plants / soy beans, that have, high yields of seeds; or choose one plant with high yield of seeds and another with other good character breed them together; select the offspring with highest yields; repeat over many generations; (i) Dunfield; (ii) Mandarin; (iii) more photosynthesis; so more production of, carbohydrates / named carbohydrate /materials for ma carbon dioxide is a limiting factor at normal concentrations; (iv) carbon dioxide in the atmosphere is increasing; ref to a reason for this, e.g. burning fossil fuels / deforestation;

Page 3	Mark Scheme: Teachers' version	Syllabus Syllabus
	IGCSE – October/November 2009	0654 23
	us / P ; ons so) 15 protons so atomic number 15 / proton is in outer shell / in group 5, and, three shells / pe	
(b) carbon hy	/drogen oxygen / C H O ;	[1]
(c) (i) N ₂ +	$3H_2 \implies 2NH_3;$	[1]
	gen and hydrogen ; sible reaction / have not reacted ;	[2]
	nigh pressure / at <i>or</i> above 200 ; ow temperature / 200 °C;	[2]
= 170000	ammonia exiting reactor per minute = 1000 × 17/1)g ;	-
moles of a	ammonia = 170 000 / 17 = 10 000 ;	[4] [Total: 12]
if tem ref. to enzy	d affect enzymes ; nperature rises much above, 37 / 40 °C ; o denaturing them / altering their shape / destroyi mes catalyse (metabolic) reactions ; out enzymes reactions will not take place ;	ing them ; [3 max]
ref. to	oration ; ater (in sweat) ; o latent heat of evaporation ; taken from skin ;	[2 max]
	a × Aa ; duce gametes A and a ;	
offspring	shown as AA, Aa, Aa and aa ;	
each proc offspring AA and A	•	ercentage [4 max]

Page 4		ge 4 Mark Scheme: Teachers' version Syllabus		s Par	er			
			IGCSE - 0	October/November 20	19	0654	~2	2
(a)) (i)	•		t ly proportional to energ roportional to energy inp	• •			ambrio
	(ii)	working 40 kJ ;] ;				www.papa	[2]
	(iii)	= 1 ;	g 40/2 × 20 ;	ecf from (ii) ecf if 2000 used in c	alculation			
		kJ / kg <i>can wo</i>		ıghout – ensure units in	answer are	appropriat	е	[3]
	(iv)		= energy / time ; /600 = 66.7/67 W					[2]
	(v)		: = 66.7/12 = 5.5 will not, melt / b	A ; ecf from (iv) low / break ;				[2]
(b)) (i)		vould be complet	tely stopped and gamm	a not stoppe	ed at all ;		[2]
	(ii)	lead ;						[1]
							[To	otal: 13]
(a)	•		oxidation / redox is lost oxygen an	; d is reduced / carbon ha	as gained ox	kygen and i	is oxidised ;	[2]
(b)) (i)		ium ions are posi e attracted to the	itive ; negative (cathode) ;				[2]
	(ii)		ium ions gain ele ree electrons (ea	ectrons ; ach) / are discharged ;				[2]
(c)				flected, by dispersed so tion (unaffected) ;	lid in solutior	n ;		[2]
(d)			tide is simple mo	lecular ; eak forces between mo	ecules ;		(max 1)	
	silio	con dioxi	ide is giant (lattic			ms ;	(max 1)	
		0	0.1			,	、 ,	[2]
							гт	otal: 10]

Page		Mark Scheme: Teachers' version	Syllabus er
		IGCSE – October/November 2009	0654 230
(a) /	Α	scapula / shoulder bone	Syllabus 0654 Phocombine [2]
E	В	humerus	1
		radius	
_		ulna v two correct for one mark ;	12
-	יוג	two concertion one many,	r_1
(b) ((i)	contracts / gets shorter ;	
		<u>pulls</u> , lower arm / forearm / ulna / radius, up ;	[2]
(i	ii)	transmit, force / pull, from muscle to bone ;	[1]
		eps exerts a turning force ;	
		ow is, fulcrum / pivot ; ment is force × distance from pivot ;	
		je force small distance from pivot can balance small force	large distance from pivot ;
5	sma	all, contraction / movement, of biceps causes large mover	ment of hand ;
		stance from elbow was greater then, turning force would	be greater / less
		e would be needed ; muscle would need to get much shorter ;	[max 3]
(d) ((i)	supply of oxygen ;	
		supply of, nutrients / glucose ;	
		for respiration ;	[may 3
		energy needed for contraction ;	[max 3]
(i	ii)	(very) small / narrow ;	
	-	brings blood close to all cells ;	
		thin <u>walls</u> / <u>walls</u> only one cell thick ; allows (rapid) movement of, substances / named substa	ances (between cells and blood);
			,,,.
		large surface area to volume ratio ; allows (rapid) movement of, substances / named substances	Incos
		(between cells and blood);	[max 2
			-
(a) ((i)	(momentum) = $m \times v$;	
		$= 4000 \times 0.5 = 2000 \text{kg m/s}$;	[2
(ii)	total momentum is conserved / momentum equals zero ;	
`	···,	energy is lost to environment / sound / heat ;	1
		speed (of each) becomes zero ;	[3
• • •	•	ork done =) force × distance ; 000 × 2 = 6000 J ;	[2

	Daga 6	Mark Scheme: Teachers' version Syllabus	DaCambridge.com
	Page 6	Mark Scheme: Teachers' version Syllabus	
		IGCSE – October/November 2009 0654	30
	(c) (i)	immerse in water ; measure <u>volume</u> of liquid displaced ;	amphi
	(ii)	(density =) mass/volume ; = 4000/4 = 1000 kg/m ³ ;	[2] Com
	(d) (i)	the number of waves per, second / unit time ;	[1]
	(ii)	20 Hz – 20 000 Hz; allow from 10 Hz up to 26 000 Hz	[1]
	(iii)	(movement)	
		/ ref. compressions and rarefactions ; transverse - pattern of disturbance is at right angles to direction of wave (move	ement);[2]
			[Total: 15]
9	low	 (a) gasoline has: lower viscosity / lower boiling point / lower melting point / less coloured / higher flammability / less dense / more volatile ; 	
	(b) (i)	carbon monoxide ;	[1]

- (ii) use of catalytic (converter);
- (c) (i)

ALKANE	ALKENE
Н Н Н H—С—С—С—Н H Н Н	$\begin{array}{cccc} H & H & H \\ H & - & & \\ H - & C - & C = & C - H \\ H \\ H \end{array}$

- (ii) X is bromine / bromine solution / bromine water / potassium manganate(VII) solution ; if hydrocarbon is an alkene then bromine changes from orange to colourless / manganate(VII) from purple to colourless ;
- (d) $C_2H_4 + H_2O \rightarrow C_2H_6O$; [1]
- (e) sulfur dioxide is produced (when sulfur compounds burn);
 ref. acid rain;
 acidic gases / sulfur compounds, react with calcium hydroxide;
 ref. neutralisation;

[Total: 11]

[1]

[2]