

Candidates answ

October/November 2010 2 hours

Candidates answer on the Question Paper.

No Additional Materials are required.

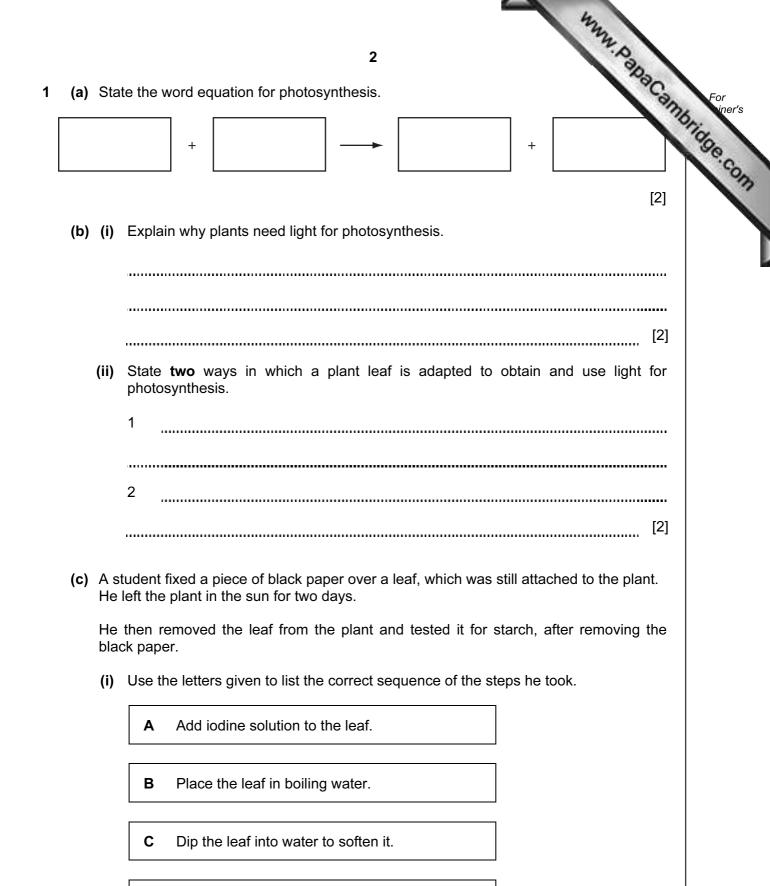
READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

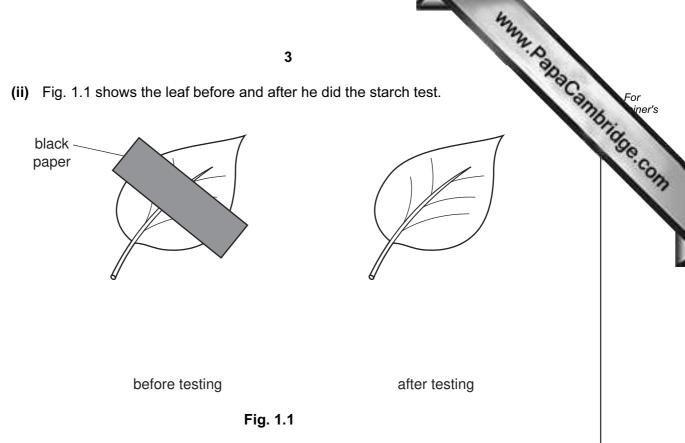
DO NOT WRITE IN ANY BARCODES.


Answer **all** questions. A copy of the Periodic Table is printed on page 28.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use			
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			
Total			
	•		

This document consists of 24 printed pages and 4 blank pages.



.....

- **D** Place the leaf in hot ethanol.
- **E** Spread the leaf on a white tile.

[3]

Complete the diagram of the leaf after testing in Fig. 1.1. Do **not** colour the diagram.

Use labels to show which parts would look orange-brown and which parts would look blue-black. [2]

2 Fig. 2.1 shows the apparatus a student used to study the rate of reaction between powdered metal and dilute hydrochloric acid.

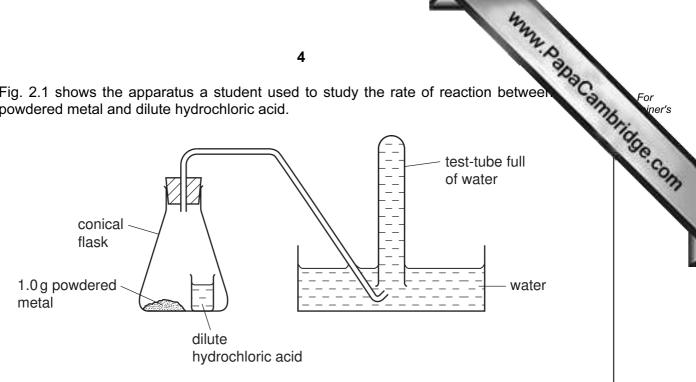


Fig. 2.1

When the student tilted the conical flask, the acid mixed with the powdered metal. If a reaction occurred, any gas which was produced collected in the test-tube, pushing the water out. The student measured the time taken for the test-tube to fill with gas.

The student used the apparatus and method described above to compare the rates of reaction between dilute hydrochloric acid and three powdered metals, X, Y and Z.

The results the student obtained are shown in Table 2.1.

metal	mass of metal/g	time for gas to fill the test-tube/seconds
x	1.0	150
Y	1.0	45
z	1.0	no gas was produced

(a) (i) Name the gas produced when metals X and Y reacted with dilute hydrochloric acid.

(ii) Describe the test you would carry out to identify this gas.

.....[1]

4

		5 Suggest and explain which metal, X, Y or Z, could have been copper. metal explanation [1]
		5
	(iii)	Suggest and explain which metal, X, Y or Z, could have been copper.
		metal
		explanation
		[1]
	(iv)	The student repeated the experiment with metal \mathbf{X} but this time she used a single piece of metal weighing 1.0 g.
		State and explain how the rate of reaction would differ from the experiment in which 1.0g of powdered metal was used.
		[2]
(b)		nother experiment, the student added powdered zinc to dilute sulfuric acid. When the bbling stopped, there was still some powdered zinc left at the bottom of the solution.
	(i)	Explain why the bubbling eventually stopped even though some zinc powder remained.
		[1]
	(ii)	Name the salt which was left in the solution at the end of the reaction.
		[1]

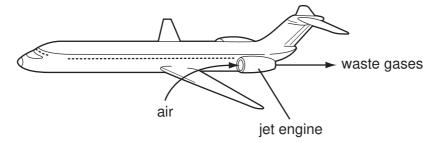
 6

 (c) In areas where pollution is very low, rain falls through air which contains the nitrogen, oxygen and carbon dioxide. Chemical weathering may occur when rainwater flows over rocks.

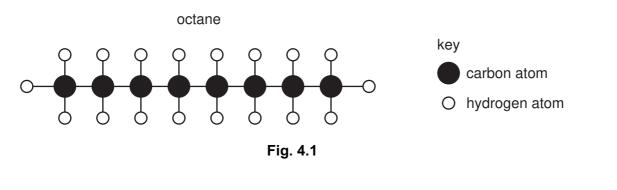
 (i) Explain why rainwater which falls through unpolluted air has a pH which is slightly less than 7.

 [2]

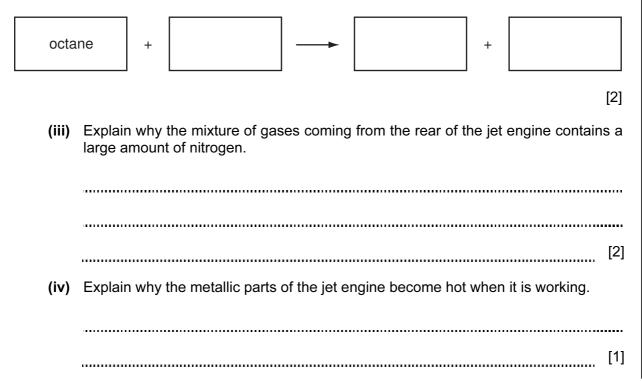
 (ii) Describe one advantage to plants of the chemical weathering of rocks.


 [2]

www.papaCambridge.com 7 (a) Complete the sentences by choosing words from the list. Each word may b 3 once, more than once or not at all. expansion heat gas longitudinal movement quickly slowly transverse vacuum wave Sound is a ______ wave. Sound travels through a material by the of its particles. In a solid the particles are close together, so sound travels more than it does in a gas. Sound cannot travel through a because there are no particles present. [4] (b) Fig. 3.1 shows a mobile phone (cell phone). Energy is stored inside the mobile phone in a battery. mobile phone containing a battery Fig. 3.1 State the energy change that takes place when the battery is being charged. energy into energy [1] (c) Radio waves and visible light are forms of electromagnetic radiation. (i) Name one other form of electromagnetic radiation. [1] (ii) Give one use for the form of electromagnetic radiation you have named in (i).


.....

[1]


www.papaCambridge.com 4 In jet engines, hydrocarbon molecules from the jet fuel mix with air and burn. This re a large amount of energy and produces a mixture of waste gases. These waste gases out through the back of the jet engine into the atmosphere.

(a) Fig. 4.1 shows a molecule of octane, which is a typical hydrocarbon molecule in jet fuel.

- (i) State the chemical formula of octane. [1]
- (ii) Complete the word equation below for the complete combustion of octane.

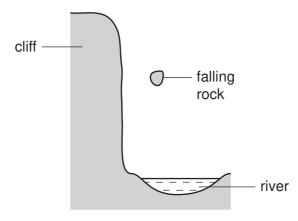
www.papacambridge.com 9 (b) (i) A carbon atom has a proton (atomic) number 6 and a nucleon (mass) number State the number of neutrons and electrons in this carbon atom. number of neutrons number of electrons (ii) State the chemical symbol of another element which is in the same group in the Periodic Table as carbon. [1]

.....

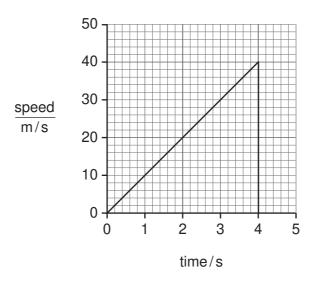
(c) Table 4.1 shows information about some metallic materials.


material	strength	density
mild steel	very high	very high
aluminium	low	low
duralumin (an aluminium alloy)	very high	low

(i) Describe briefly how aluminium and an alloy of aluminium differ in composition.


[1] (ii) Duralumin is used in the manufacture of aircraft. Explain why the properties of this material make it suitable for this purpose. [2]

		4333
	10	1.02
(a)	Complete the sentences about the human nervous system, using som the list.	ne of the W
	biceps brain detectors eff	ectors
	nerves receptors	
	Specialised cells in the human nervous system detect external stimuli.	These cells are
	called They convert the stimulus into elec	trical impulses
	in, which carry the impulse to the central ner	vous system.
	The central nervous system then sends impulses to parts of the body that	
	stimulus, such as muscles or glands. These parts are called	[3]
(b)	When we smell food, the salivary glands respond by secreting saliva.	
	(i) Saliva contains the enzyme amylase. Describe the function of amy	/lase.
		[2]
	(ii) Explain why it is necessary for most types of food that we eat to be	
		5 טושבטובט.
		[2]
	(iii) Describe how food is moved through the alimentary canal, swallowed it.	after we have
		[2]


Please turn over for Question 6.

www.papacambridge.com Fig. 6.1 shows a rock of mass 2 kg that is falling from the top of a cliff into the river be 6

(a) Fig. 6.2 is the speed-time graph for the motion of the rock.

- m/s State the maximum speed of the rock. (i) [1]
- (ii) Use your answer to (i) to calculate the kinetic energy of the rock as it hits the water.

State the formula that you use and show your working.

formula used

working

[2] J

	4332	
	13	
(b)	An observer on the top of the cliff measured the time between when he saw the the water and when he heard the sound of the splash. This time was 0.25 s. The speed of sound in air is 330 m/s.	For iner's iner's
	Calculate the height of the cliff.	Se.C.
	State the formula that you use and show your working.	33
	formula used	
	working	
	m	[2]
(c)	The rock has a mass of 2000 g and a volume of 700cm^3 .	
	Calculate the density of the rock.	
	State the formula that you use and show your working.	
	State the units of your answer.	
	formula used	
	working	
		[3]
(d)	The rock contains radioactive substances emitting high levels of ionising radiation.	
	(i) State how the radioactivity could be detected.	
		[1]
	(ii) Explain why it would be dangerous for a person to handle this rock without pro protection.	per
		[1]

www.papaCambridge.com The gray wolf, Canis lupus, is a predator that lives in North America. Fig. 7.1 shows 7 wolf.

Fig. 7.1

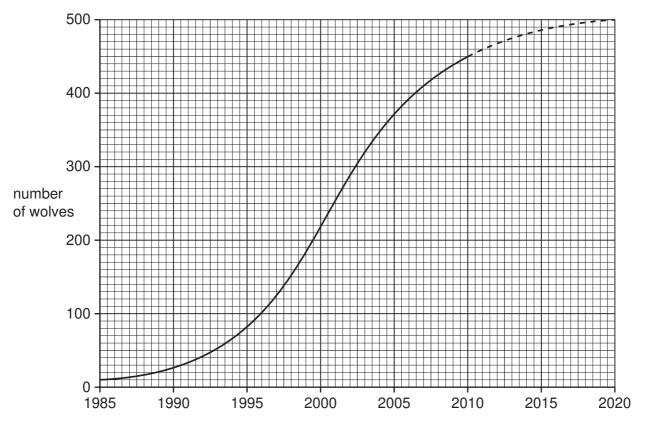
(a) State one feature, visible on Fig. 7.1, which shows that the gray wolf is a mammal.

[1]

(b) The binomial for the gray wolf is Canis lupus. Another dog-like animal that lives in North America is the coyote, Canis latrans.

What do these binomials tell us about the relationship between gray wolf and the coyote?

..... [2] These all eat plants.


(i) Construct a food web including all the organisms mentioned above.

		[3]
(ii)	State what the arrows in your food web represent.	
		[1]
(iii)	With reference to your answers to (i) and (ii), suggest why wolves are rarer th white-tailed deer.	an
		[2]

(d) People used to shoot gray wolves. In 1978, a conservation programme for gray began in Wisconsin and people were no longer allowed to shoot them.

The main causes of death of wolves are disease, starvation and accidents such as collisions with vehicles.

www.papaCambridge.com Fig. 7.2 shows the size of the gray wolf population in Wisconsin between 1986 and 2010. It also shows the predicted wolf population if the conservation programme is successful.

year

Fig. 7.2

www.papacambridge.com 18 Fig. 8.1 shows an electric heater being used to heat up 0.5kg of water in a beaker. 8 to power supply beaker heater of water Fig. 8.1 (a) What is the main process by which energy is transferred through the water? [1] _____ (b) The specific heat capacity of the water is 4200 J/kg °C. (i) Explain what is meant by the term specific heat capacity. _____ [1] (ii) The electrical energy supplied to the heater in 10 minutes was 70000 J. Calculate the power supplied to the heater. State the formula that you use and show your working. formula used working

W [2]

		22	
		19	
(c)		e electrical energy for the heater has been generated by burning a fossil fure ver station.	For iner's
	(i)	Name one suitable fossil fuel.	[1] Sec.
	(ii)	Describe one problem with the burning of fossil fuels to generate electricity.	13
			[1]
	(iii)	State one alternative energy resource to fossil fuels, which could have been us to generate the electricity.	sed
			[1]

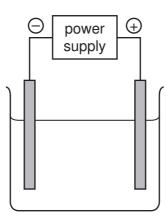
		20 XXXXX. D	
9	(a)	Copper metal reacts with oxygen gas to form copper oxide.	For
		State why this reaction is an example of oxidation.	de.
		[1]	OT

(b) Table 9.1 shows information about two different types of copper oxide.

Table	9.1	
-------	-----	--

name	colour	chemical formula
copper(II) oxide	black	CuO
copper(I) oxide	red	Cu ₂ O

(i) Describe briefly the difference in chemical composition of these two types of copper oxide.


[2]

(ii) Copper is a transition metal.

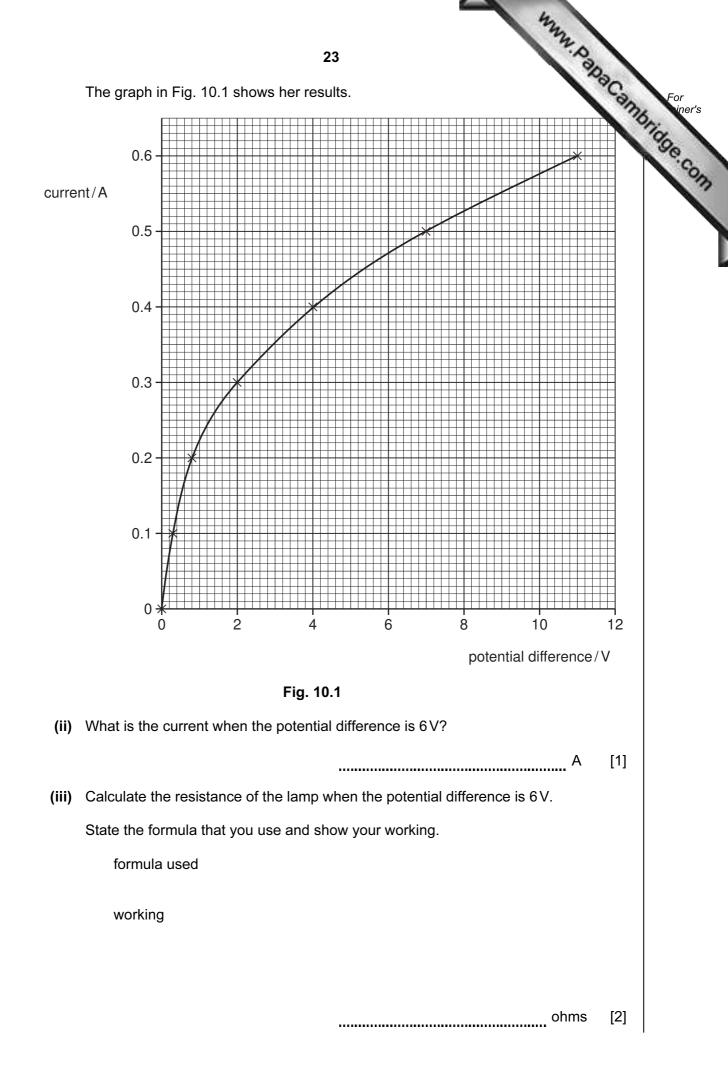
State **one** property, shown in Table 9.1, which is typical of transition metals.

......[1]

www.papaCambridge.com (c) Fig. 9.1 shows apparatus used in the electrolysis of copper chloride solution.

(i)	On the diagram, clearly label the anode and the electrolyte .	[2]
(ii)	Copper chloride solution is a mixture of copper ions and chloride ions in water.	
	State briefly one difference between a chlorine <i>atom</i> and a chloride <i>ion</i> .	
		[1]
(iii)	When the electrolysis reaction in Fig. 9.1 is occurring, bubbles of gas appear at surface of the anode.	the
	Describe a safe test and its result to confirm that this gas is chlorine.	
		[2]
(iv)	Name the substance which forms at the cathode.	

[1]


www.papaCambridge.com 10 (a) A student investigated the relationship between the potential difference across and the current passing through it.

She used the following apparatus:

ammeter connecting wires lamp power supply voltmeter

(i) Draw a suitable circuit diagram for this investigation.

[4]

		prought the ma	gnets close toget	her with opposite pole	s facing.	
		Ν	S	Ν	S	N. PapaCanne
	State	what she obse	erved.			
						[1]
(ii)	She b	prought the ma	gnets close toget	her with like poles fac	ing.	
		Ν	S	S	Ν	
	State	what she obse	erved.			
						[1]
iii)	She t		t iron bar towards	one of the magnets.		[1]
iii)	She t		t iron bar towards S	one of the magnets.		[1]
iii)		prought the sof	S	-		[1]
iii)	State	orought the sof	S erved.	-		

27

Pe Pe University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of

³ ermission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every easonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

I		II	
7 Li Lithium 3		9 Be eryllium	
23 Na Sodium		24 Mg gnesium	
39 K Potassium 19		40 Ca alcium	s 21
85 Rb Rubidium 37		88 Sr rontium	39
133 CS Caesium 55		137 Ba arium	La 57
Fr Francium 87		226 Ra adium	, 89
*58-71	Lanth 3 Actii		

Scandium

Lanthanum

t

a = relative atomic mass

b = proton (atomic) number

X = atomic symbol

48

Ti

Titanium

91

Zr

Zirconium

178

Hf

Hafnium

22

40

72

51

v

Vanadium

93

Nb

Niobium

181

Та

Tantalum

140

Ce

Cerium

232

Th

Thorium

58

90

23

41

73

52

Cr

Chromium

96

Мо

Molybdenum 42

184

W

Tungsten

141

Pr

Praseodymium

Pa

Protactinium

59

91

74

24

DATA SHEET The Periodic Table of the Elements

144 150 152 157 159 162 165 167 169 173 175 Ned Draw Draw Draw Draw Via Lux
B C N O F Ne 27 28 31 32 35. 40 27 28 31 32 35. C1 Arr 13 14 Silicon 16 18 12 13 32 Silicon 16 18 Manganese 26 Co Ni Cu Zilicen 7 73 75 76 8 8 8 8 8 55 56 59 59 64 65 70 73 78 8 8 8 8 Manganese 26 101 103 106 108 112 115 119 122 128 127 131 Tc Ru Ru Ru Pod Ag Cadmium 101 103 106 108 112 115 119 122 128 127 131 Xe Tc Ru Ru Pd Ag Cadmium 49 207 209 Po At
All Aluminium 13 Si 14 Si 15 P Posphorus 15 S S Sultur 16 Cl 17 Ar Ar 18 55 56 59 59 54 60 70 73 75 79 80 84 55 16 Cobalt 28 29 29 21c 32 Galum 32 Arsic 34 Bromine 85 8c Br Kr Kr 101 103 106 108 112 115 119 122 128 127 131 Xe Technetium Rth Pdd Ag Cdd In Sn Sn Sb 12 131 Xe Xe Xen
Mn Maganese 5 Fe 26 Co 27 Ni 28 Cu 28 Cu 29 Zn 30 Ga 31 Ga Gallium 31 Ge Germanium 32 Assenic 33 Se selenium 34 Br 36 Kr Kr 36 Tc 5 101 Ru Rehenium 44 103 Rb 106 Pd AR 108 Ag Silver 112 Cd Ag Silver 115 Cd Cd Cadmium 48 119 Cd Cadmium 49 119 Sn 51 122 S1 128 Fe Te 127 I I I I I I I I I I I I I I I I I I I
101 103 106 108 112 115 119 122 128 127 131 Xe Tcc Ru Ru Rh Pd Agg Cd Cd In Sn Sn Sb Te I Xe Xeon Store Xeon Store Add Xe Xeon Store Store
Re Rhenium 75Os Osmium 76Ir IrdiumPt Platinum 78Au goldHg goldTl T Mercury 80Pb T Thallium 81Bi Bi Bismuth 82Po Polonium 84At At Astaine 86Rn Raon 86144150152157159162165167169173175144DrmeComeFueOddThDue165167TmeXhhu
Nd Day Can Fit Od The Dir Ha Fit Tay Mh Lit
Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium 0 61 62 63 64 65 66 67 68 69 70 71
Nacodymium Prim Promethium Sim 61 Europium Gadolinium 63 TB Dy 0 adolinium Dy 0 byprosum Homium 67 Erbium 68 Tmilum 69 Tmilum 70 Tubulum 70 Lu Luteblum 71 238 Np Np Pu Am Cm Bk Cf Ess Fm Mdd No Lr 238 U Np Pu Am Cm Bk Cf Ess Fm Mdd No Lr utrahum 2 Nsptunium 93 94 95 96 97 98 99 100 101 102 120 103

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).