

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen.

White in dark blue of black peri.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** questions. A copy of the Periodic Table is printed on page 24.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use			
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			
Total			

This document consists of 22 printed pages and 2 blank pages.

www.papacambridge.com

1 Fig. 1.1 shows a section through the human thorax.

(a) On the diagram, use label lines to label each of the following structures:

.....

the trachea the heart a bronchiole [3] (b) List the structures through which blood passes as it flows from the heart to the lungs and back to the heart again. Choose from these words: aorta artery capillaries left atrium left ventricle pulmonary artery pulmonary vein right atrium right ventricle vena cava The first structure has been done for you. 1 right ventricle 2 3 4 5 [4]

	3	
(c)	Describe how the blood transports oxygen.	For iner's
	[2]	sge.com
(d)	Describe how oxygen is supplied to a developing fetus in its mother's uterus.	
	[3]	

- 2 In electrochemical cells (batteries), electrical energy is obtained from chemical reaction
 - (a) Fig. 2.1 shows some uses of electrochemical cells.

stopped working.

Explain briefly what has happened inside the cells to cause them to stop working.

.....

(ii) State one reason why different cells are used in the watch and the torch (flashlight).

..... [1]

www.papacambridge.com (b) Some types of digital clocks use electrical energy which is obtained fin electrochemical cell. These cells can be made by placing metal electrodes in potato.

Fig. 2.2 shows a simplified diagram of such a clock.

Fig. 2.2

(i) Suggest why a potato can be used as part of an electrochemical cell.

		42
		6
;)	Sor	ne modern cars, known as hybrids, have two engines.
	In o mov cell	one of these engines, hydrocarbon fuel is burnt to provide the energy required ve the car. In the other, electrical energy is provided by a powerful electrochemical .
	At l	ower speeds, the electric engine drives the car and the other engine is switched off.
	(i)	Name a liquid hydrocarbon which is used as car fuel.
		[1]
	(ii)	Name the process which is used to separate car fuel from petroleum.
		[1]
	(iii)	Name two compounds which are produced when hydrocarbon fuel is burnt in a car engine.
		1
		2 [2]
	(iv)	Suggest why air pollution in towns and cities might be reduced if hybrid cars replaced ordinary cars.
		[3]

www.papaCambridge.com 7 3 (a) A student wrote down some properties of alpha, beta and gamma radiations. Draw a line from each property to the correct radiation. radiation property has no charge has no mass alpha passes through paper but stopped by a few millimetres of aluminium beta passes through several centimetres of lead contains positively gamma charged particles stopped by paper [3] (b) Alpha, beta and gamma radiations are known as ionising radiations. (i) Explain the meaning of the term *ionising radiation*. [1] (ii) Explain why alpha radiation is more effective at ionising than beta radiation. [1] (iii) State two effects of ionising radiation on the human body. 1 2 [2]

Nitrogen compounds in soil are taken up by growing crops. 4

www.papaCambridge.com Fig.4.1 shows two ways in which nitrogen compounds may be added to soil used growing crops.

Fig. 4.1

(a) (i) State the meaning of the term *nitrogen fixation*.

.....[1] (ii) Outline one way in which nitrogen fixation occurs. [2] (iii) Explain why nitrogen molecules taken directly from the air **cannot** be used by most growing crops. [1]

www.papaCambridge.com (b) Table 4.1 shows how much of three elements, nitrogen, phosphorus and pote was removed from the soil by different crops. In this table, the elements are show their chemical symbols.

crop	mass removed in kg/hectare				
crop	Ν	Р	К		
oats	72	13	18		
sugar beet	86	14	302		
wheat	115	22	26		

Table	4.1
-------	-----

- (i) State the crop in Table 4.1 which took up the highest mass of potassium per hectare.
 - [1]
- (ii) The sugar beet was planted in a field of 2.5 hectares.

Calculate the combined mass of nitrogen and phosphorus taken up by the crop of sugar beet.

Show your working.

kg [1]

		10	
(c)	The amr	nitrogen in NPK fertiliser exists in the form of compounds such as the nonium nitrate, NH_4NO_3 , and diammonium phosphate, $(NH_4)_2HPO_4$.	Cam
	Am	monium nitrate is made by reacting ammonia with nitric acid.	
	(i)	Name the type of chemical reaction which occurs between ammonia and ni acid.	tric
			[1]
	(ii)	State the total number of atoms which are shown combined in the formula diammonium phosphate.	of
			[1]
('III)	Describe a chemical test to show whether a solution contains ammonium ions	
,	,		
			[3]
(d)	Sta	ch molecules are polymers of glucose.	
	(i)	Draw a small section of a molecule of starch, using the symbol	
		-G to represent a glucose molecule.	
			[1]
	(ii)	Name the elements that are combined in glucose.	
			[1]

BLANK PAGE

Please turn over for Question 5.

Fig. 5.1

	42
	13
(ii)	Calculate the resistance of the lamp when the current was 0.6 A.
	State the formula that you use and show your working.
	formula used
	working
	ohms [2]
(b) (i)	The generator at a power station supplies a current of 50 A at a voltage of $25000V$.
	Use the formula
	power = voltage × current
	to calculate the power output of the generator.
	Show your working.
(ii)	Electrical energy is transmitted along cables at a very high voltage of 400 000 V.
	Explain how this reduces the cost of supplying the electricity. Use the ideas of energy loss and current in your answer.
	[3]
(iii)	State two properties of aluminium which make it suitable for overhead power cables.
	1
	2 [2]

- www.papaCambridge.com 14 6 Fig. 6.1 shows two plant cells. One has been placed in a blue dye and the other in dye. part stained part red stained blue cell in blue dye cell in red dye Fig. 6.1 (a) (i) Name the part of the cell that has been stained by each dye. the blue dye [2] the red dye (ii) Which dye(s) has passed through a cell membrane? Tick the correct box. neither blue or red both blue and red blue only red only [1]
 - (iii) Which dye(s) would stain part of an animal cell? Tick the correct box.

	12
	15
(b) (i)	Cells from the palisade layer of a leaf contain structures not shown in Fig. 6.
	These structures contain a green pigment that absorbs energy from sunlight. The energy is used to help the plant to make its own food.
	On the cell in blue dye in Fig. 6.1, draw and name one of these structures. [2]
(ii)	Describe how a plant makes its own food.
	[3]
(iii)	Explain how the process you have described in (ii) benefits animals.
- •	
	[3]

17 (ii) At the end of a long race, an athlete may be wrapped in a shiny foil blat For prevent him cooling down too quickly. Explain how the shiny foil blanket helps reduce energy losses. Use ideas about conduction, convection and radiation in your answer.

 [3]

	12 March	
	18	
(a) T tř	he disease cystic fibrosis is caused by a recessive allele, f , of a gene. The syn ne normal, dominant allele is F .	Can
(i) State the genotype of a person with cystic fibrosis.	
		[1]
(ii) State the phenotype of a person who is heterozygous for cystic fibrosis.	
		[1]
(iii) Explain why a person who has the alleles FF cannot have a child with cyst fibrosis.	tic
	You can use a genetic diagram as part of your answer if it helps your explanation	
		[3]
(b) A	person with cystic fibrosis often has a blockage of the duct that leads from th ancreas into the alimentary canal.	he
Т р	his duct usually carries pancreatic juice, which contains the enzymes amylas rotease and lipase.	se,
(i) Describe the function of amylase.	
		[2]
(ii) Explain why a person with a blocked pancreatic duct will not be able to absorb a many nutrients from their food as a person with a normal pancreatic duct.	as
		[2]

www.papaCambridge.com 20 (c) Fig. 9.2 shows a car on a hydraulic lift in a garage. The total weight being 18000 N. The lift uses four large pistons. Each large piston has an area of 0.03 m² smaller piston **X** has an area of 0.01 m^2 . hydraulic fluid piston area of each large piston 0.03 m² piston X area 0.01 m² Fig. 9.2 (i) Calculate the total area of the four large pistons. m^2 [1] (ii) Use the formula pressure = force / area to calculate the pressure in the hydraulic fluid used in the lift. Show your working.N/m² [1] (iii) This pressure is caused by piston X. Calculate the minimum force which piston **X** must exert to lift the car. Show your working. [2]N

BLANK PAGE

Please turn over for Question 10.

e 10.1 shows lical symbols (some properties of the elements.	22 s of five elemen Table 10.	ts, P to T. The c	ode letters are
element code letter	melting point /°C	boiling point /°C	conduction of electricity	number of outer electrons in an atom
Ρ	-89	-186	insulator	8
Q	650	1090	conductor	2
R	-7	58	insulator	7
S	181	1342	conductor	1
т	-220	-188	insulator	7

Table 10.1

Answer the following questions, using **only** the elements shown in the table.

(a) (i) State and explain which elements are from the same group of the Periodic Table.

	elements	
	explanation	
		[1]
(ii)	State and explain which elements are metals.	
	elements	
	explanation	
		[1]
(iii)	State and explain which elements are gases at a room temperature of 20 °C.	
	elements	
	explanation	
		[1]

www.papaCambridge.com (b) Fig. 10.1 shows atoms of the two elements R and S. Only the outer electron sho shown.

Fig. 10.1

When element R reacts with element S the atoms of both elements change and become ions.

(i) Describe, in terms of electrons, how an atom of element **S** would change into an ion.

......[1]

(ii) Predict and explain whether the compound formed between elements S and R is likely to be a solid, liquid or gas at room temperature.

Explain your answer.

state explanation [3]

(c) The element bromine is produced when compounds dissolved in seawater react with chlorine.

The word equation for a typical reaction producing bromine is shown below.

chlorine + sodium bromide ----- sodium chloride + bromine

(i) State the colour change which would show that bromine is produced in this reaction.

[1]

(ii) Explain briefly, in terms of reactivity, why these reactants produce bromine.

[1]

Pe rea put University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of

rmission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every asonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the blisher will be pleased to make amends at the earliest possible opportunity.
--

								Gr	oup								
I	II							_					IV	V	VI	VII	0
							1 H Hydrogen 1							1	1		4 He Helium 2
7 Li Lithium	9 Be Beryllium 4											11 B Boron 5	12 C Carbon 6	14 N Nitrogen 7	16 O Oxygen 8	19 F Fluorine 9	20 Ne Neon 10
23 Na Sodium	24 Mg Magnesium 12											27 Aluminium 13	28 Si Silicon 14	31 P Phosphorus 15	32 S Sulfur 16	35.5 C1 Chlorine 17	40 Ar Argon 18
39 K ?otassium	40 Ca Calcium 20	45 Sc Scandium 21	48 Ti Titanium 22	51 V Vanadium 23	52 Cr Chromium 24	55 Mn Manganese 25	56 Fe Iron 26	59 Co Cobalt 27	59 Ni Nickel 28	64 Cu Copper 29	65 Zn Zinc 30	70 Ga Gallium 31	73 Ge Germanium 32	75 As Arsenic 33	79 Se Selenium 34	80 Br Bromine 35	84 Kr Krypton 36
85 Rb Rubidium	88 Sr Strontium 38	89 Y Yttrium 39	91 Zr Zirconium 40	93 Nb Niobium 41	96 Mo Molybdenum 42	Tc Technetium 43	101 Ru Ruthenium 44	103 Rh Rhodium 45	106 Pd Palladium 46	108 Ag Silver 47	112 Cd Cadmium 48	115 In Indium 49	119 Sn 50	122 Sb Antimony 51	128 Te Tellurium 52	127 I Iodine 53	131 Xe Xenon 54
133 Cs Caesium	137 Ba Barium 56	139 La Lanthanum 57 *	178 Hf Hafnium 72	181 Ta Tantalum 73	184 W Tungsten 74	186 Re Rhenium 75	190 Os Osmium 76	192 Ir Iridium 77	195 Pt Platinum 78	197 Au _{Gold} 79	201 Hg Mercury 80	204 T 1 Thallium 81	207 Pb Lead 82	209 Bi Bismuth 83	Polonium 84	At Astatine 85	Rn Radon 86
Fr Francium	226 Ra Radium 88	227 Ac Actinium 89														_	
58-71 Lanthanoid series 90-103 Actinoid series			140 Ce Cerium 58	141 Pr Praseodymium 59	144 Nd Neodymium 60	Pm Promethium 61	150 Sm Samarium 62	152 Eu Europium 63	157 Gd Gadolinium 64	159 Tb Terbium 65	162 Dy Dysprosium 66	165 Ho Holmium 67	167 Er Erbium 68	169 Tm Thulium 69	173 Yb Ytterbium 70	175 Lu Lutetium 71	
у	a a X X	a = relative ator (= atomic sym o = proton (ator	nic mass Ibol nic) number	232 Th Thorium 90	Pa Protactinium 91	238 U Uranium 92	Np Neptunium 93	Pu Plutonium 94	Am Americium 95	Cm Curium 96	Bk Berkelium 97	Cf Californium 98	Es Einsteinium 99	Fm Fermium 100	Md Mendelevium 101	No Nobelium 102	Lr Lawrencium 103
				The v	olume of	one mole	of any ga	as is 24 di	m ³ at roo	m temper	ature and	l pressure	(r.t.p.).				onome

