

8813001337

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** questions. A copy of the Periodic Table is printed on page 28.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

For Exam	iner's Use
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
Total	

2 hours

This document consists of 25 printed pages and 3 blank pages.

www.papacambridge.com (a) Fig. 1.1 shows apparatus used in the electrolysis of copper chloride solution. 1

Fig. 1.1

(i) Describe what is observed at the cathode.

[1]

(ii) Chloride ions have a single negative electrical charge, Cl^{-} .

For every copper ion in the solution, two chloride ions are present.

Deduce the electrical charge of a copper ion.

Show how you obtained your answer.

[2]

www.papaCambridge.com (iii) Fig. 1.2 shows diagrams of two particles L and M. Each of these particle 17 protons in their nucleus. Only the outer shell of each particle is shown.

Fig. 1.2

State and explain which one of these particles, L or M, would move towards the anode during electrolysis.

particle -----[2]

(iv) The bubbles of gas which rise from the anode contain diatomic molecules of chlorine.

Complete the bonding diagram below to show how the outer electrons are arranged in a chlorine molecule.

[2]

www.papaCambridge.com (b) The apparatus shown in Fig. 1.3 can be used to investigate the reaction between oxide, PbO, and carbon.

Fig. 1.3

When the mixture is heated, a redox reaction occurs in which lead oxide is reduced.

The drop of limewater suspended on the glass rod turns cloudy.

- (i) Name the gas which is produced in this redox reaction.
- [1] (ii) Suggest the balanced symbolic equation for the redox reaction between lead oxide and carbon. (iii) A student suggested carrying out a similar redox reaction to that shown in Fig. 1.3, using potassium oxide instead of lead oxide. Potassium is an alkali metal in Group 1 of the Periodic Table. Predict and explain whether or not there would be a redox reaction between potassium oxide and carbon. [2]

BLANK PAGE

Please turn over for Question 2.

2 (a) Fig. 2.1 shows an electric circuit.

Complete Table 2.1 to show the reading on each ammeter.

ammeter	current/amps
A ₁	0.7
A ₂	
A ₃	
A ₄	0.3

(b) Fig. 2.2 shows how the current in a circuit varies with voltage.

(i) Is Ohm's Law obeyed in this circuit?

Explain your answer.

[1]

[2]

www.papacambridge.com

www.papaCambridge.com 3 A healthy plant growing in a pot was watered and placed in a sunny window. A trans plastic bag was placed over the plant, as shown in Fig. 3.1.

Fig. 3.1

(a) The temperature near the window fell overnight. The next morning, small droplets of water were visible on the inside of the plastic bag.

Explain why the droplets of water appeared on the inside of the plastic bag.

..... [4]

www.papacambridge.com (b) The plastic bag was then removed from the plant. The next day was warm and and by the end of the day the plant had wilted. Fig. 3.2 shows the wilted plant.

Fig. 3.2

(i) Explain why the plant wilted. [2] (ii) Explain why the main stem of the plant remained upright, even when the rest of the plant wilted. [1]

(iii) Fig. 3.3 shows a cell from the plant leaf before it wilted.

Fig. 3.3

In the space below, draw the same cell to show its appearance after the plant had wilted.

www.papaCambridge.com

BLANK PAGE

Please turn over for Question 4.

(a) Be	low is a list of some	types of waves.			Car
ga	imma ultrasound	infra-red	microwav	e sound	
C+		he list that is		VISIBLE light	
36	ale one wave nom i				
(i)	a longitudinal wav	e,			[1]
(ii)	emitted by hot obj	ects but cannot be	e seen by the huma	n eye,	
					[1]
(iii)	the transverse wa	ve with the highes	t frequency.		
					[1]
(b) A s	sound wave has a fr	equency of 50 000)Hz.		
(i)	Explain the meani	ng of the term free	quency.		
					[1]
(ii)	Explain whether a	person would be	able to hear this so	und.	
					[1]
(iii)	Sound waves trav	el through the air	at 330 m/s.		
	Calculate the wave	elength of the sou	nd wave.		
	State the formula	that you use and s	show your working.		
	formula used				
	working				
					[3]

www.papaCambridge.com 13 5 In many countries, river water is collected and treated to make it safe for humans to (a) Explain which one of the treatments shown below might not remove all the harm bacteria from water which is to be used for drinking. chlorination distillation filtration treatment [1] (b) Sometimes large numbers of tiny pieces of insoluble solid material become dispersed in river water, forming a colloid. Fig. 5.1 shows a simplified diagram of a colloid. dispersed solid water particles Fig. 5.1 Explain in terms of light rays, why colloids are **not** transparent. You may draw some light rays on Fig. 5.1 to help you to answer this question. [2]

www.papaCambridge.com (c) A chemist wanted to find the concentration in mol/dm³ of sulfuric acid in a save acidic lake water.

Fig. 5.2 shows the apparatus and materials that he used.

Fig. 5.2

The chemist slowly added 0.05 mol/dm³ sodium hydroxide solution to 1.0 dm³ of acidic lake water contained in a beaker until the acid had just been neutralised.

The chemist found that it required 12.5 cm³ of 0.05 mol/dm³ sodium hydroxide solution to neutralise the acid.

(i) State the number of moles of sodium hydroxide which are dissolved in 1.0 dm³ of the sodium hydroxide solution.

> [1]

(ii) Calculate the number of moles of sodium hydroxide which are dissolved in 12.5 cm³ of the sodium hydroxide solution.

Show your working.

[2]

 $H_2SO_4 \rightarrow Na_2SO_4 + 2H_2O$ 2NaOH +

www.papacambridge.com Calculate the number of moles of sulfuric acid which were contained in 1.0 dm³ of acidic lake water.

Show your working.

[2]

[2]

(c) The mass of the car is 800 kg.

www.papaCambridge.com Calculate the kinetic energy of the car when travelling at its maximum speed on the journey.

State the formula that you use and show your working.

formula used

working

[3]

(d) When the speed of a car doubles, its momentum also doubles but its kinetic energy is four times greater.

Explain why.

..... [2]

	18 18	
7 (a)	Mammals are vertebrates. State two characteristic visible features of mamma distinguish them from all other classes of vertebrates.	2] For iner
(b)	Mammals are able to maintain a constant internal body temperature.	
	Describe how vasodilation helps to cool the body when it gets too hot.	
	[3]
(c)	The maintenance of a constant internal body temperature is part of homeostasis.	
	Homeostasis also includes the regulation of blood glucose concentration and the removal of toxic waste products, such as urea, from the body.	ie
	(i) Describe how blood glucose concentration is brought back to normal if it rises to high.	00
	[3]

www.papaCambridge.com (ii) Urea is removed from the body dissolved in water, forming urine. Fig. 7. incomplete diagram of the kidneys and other organs involved in the remova urea from the body.

Fig. 7.1

Complete Fig. 7.1 by drawing and labelling:

- the renal arteries .
- the renal veins
- the ureters
- the urethra .

[4]

Fig. 8.1

Calculate the half-life of the radioactive source.

Show your working.

on Geiger counter/

counts per second

100

80

60

40

20

0+

[2]

25

		422
		21
(b)	Alp	ha radiation is a form of ionising radiation.
	(i)	Explain the meaning of the term <i>ionising radiation</i> .
		[1]
	(ii)	An alpha radiation source is less harmful to humans than a gamma radiation source if it is outside the body.
		An alpha radiation source is more harmful than to humans than a gamma radiation source if it is inside the body.
		Explain why.
		[2]
(c)	Nuc	clear fission and nuclear fusion are both sources of energy.
	(i)	Describe how these two processes differ.
		[2]
	(ii)	There are safety concerns about the use of nuclear fission as an energy resource.
		Describe and explain one of these safety concerns.
		[2]
		[4]

www.papaCambridge.com (a) The chemical symbols for the atoms shown below include proton (atomic) number 9 nucleon (mass) numbers.

 ${}^{16}_{8}O {}^{31}_{15}P {}^{32}_{16}S {}^{70}_{31}Ga$

Complete Table 9.1 which shows the names and the numbers of protons and neutrons in two of the atoms shown above.

Table	9.1
-------	-----

element name	protons	neutrons
oxygen		
	15	16

[2]

(b) Fig. 9.1 shows part of a chart of the melting points in kelvins (K) of some elements.

Fig. 9.1

The melting points of the elements in Period 2 and Period 3 of the Periodic Table a periodic pattern.

www.papaCambridge.com (i) Use Fig. 9.1 and your understanding of the term *periodic pattern* to predict the element which has the highest melting point in Period 3.

Explain your choice briefly.

element

.....

explanation

(ii) Carbon, proton number 6, and nitrogen, proton number 7, have very different melting points.

Explain the difference in terms of the structures of these elements.

In your answer you should include the phrases, giant structure and simple molecular structure.

You may wish to draw diagrams as part of your answer.

[3]
[3]

- www.papacambridge.com (c) Carbon and hydrogen combine to form a very large number of hydrocarbons. Ethene, C₂H₄, is a gaseous, unsaturated hydrocarbon, which is of industrial importance
 - (i) Complete the displayed formula of the ethene molecule below.

Н

С

[2] (ii) Unsaturated hydrocarbons are made in industry from fractions obtained by the fractional distillation of oil (petroleum). Name the process which is used to make unsaturated hydrocarbons and describe briefly how it is done. name of process description

[3]

(iii) Describe, in terms of changes to chemical bonds, what happens when ethene molecules react to form molecules of poly(ethene).

..... [2]

(d) Mutations sometimes occur in the chromosomes of a cell.

Mutations are generally harmful, but sometimes a mutation may increase organism's ability to survive in its environment.

www.papacambildge.com Explain how this could lead to a change, over time, in the characteristics of a population of organisms.

.....[4]

BLANK PAGE

27

Pe University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of

armission to reproduce asonable effort has bee iblisher will be pleased t	
items n mad o make	
where third e by the put e amends at	
-party owned blisher (UCLE the earliest p	3
d material p ≘S) to trace o possible oppo	11
rotected by copyright ho ortunity.	19
copyright is lders, but if ;	37
any items re	55
as been sc quiring clea	87
ught anc rance ha	*5 †9
l cleared v ve unwittin	Ke
where poss igly been in	
sible. Every icluded, the	

I II IV V VI VII 0 1 II IV V VI VII 0 7. 9 I IH H 16 19 20 1 1 1 1 1 10									Gr	oup					1			1
1 1 <th1< th=""> <th1< th=""> <th1< th=""></th1<></th1<></th1<>		II											III	IV	V	VI	VII	0
7. Lin 9 Be 14 11 Magenetion 12 11 Magenetion 13 12 Second 13 Second 12 Second 13 Seco								1 H Hydrogen 1										4 He Helium
23 Model 12 24 Model 12 27 Model 13 27 Model 14 28 Model 14 31 Model 15 32 Model 15 31 Model 15 32 Model 15 31 Model 15 32 Model 15 31 Model 15 32 Model 15 31 Model 15 32 Model 15 31 Model 16 31 Model 16 32 Model 15 31 Model 15 32 Model 15 31 Model 15 32 Model 15 31 Model 15 30 Model 15 30 Model 15 30 Model 16 30 Model 16 30 Model 16 30 Model 16 30 Model 16 30 Model 16 30 Model 17 30 Model 16 30 Model 16 30 Model 16	ium Ber 4	9 Be eryllium											11 B Boron 5	12 C Carbon 6	14 N Nitrogen 7	16 O Oxygen 8	19 F Fluorine 9	20 Ne Neon
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3 2 a N ium Magr 12	24 Mg agnesium											27 Al Aluminium 13	28 Si Silicon 14	31 P Phosphorus 15	32 S Sulfur 16	35.5 C1 ^{Chlorine} 17	40 Ar Argon 18
$\frac{35}{8b} = \frac{88}{8} + \frac{89}{9} + \frac{91}{1} + \frac{93}{2r} + \frac{93}{8b} + \frac{96}{8b} + \frac{7}{1} + \frac{101}{8u} + \frac{101}{8u} + \frac{103}{44} + \frac{103}{8b} + \frac{106}{8b} + \frac{106}{8b} + \frac{108}{8b} + \frac{112}{6d} + \frac{115}{1b} + \frac{115}{1b} + \frac{119}{8b} + \frac{112}{8b} + \frac{118}{8b} + \frac{112}{1b} + \frac{118}{1b} + \frac{118}{8b} + 1$	9 Cal	40 Ca Calcium	45 Sc Scandium 21	48 Ti itanium	51 V Vanadium 23	52 Cr Chromium 24	55 Mn Manganese 25	56 Fe Iron 26	59 Co Cobalt 27	59 Ni Nickel 28	64 Cu ^{Copper} 29	65 Zn ^{Zinc} 30	70 Ga Gallium 31	73 Ge Germanium 32	75 As Arsenic 33	79 Se Selenium 34	80 Br Bromine 35	84 Kr Krypton 36
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5 8 b S dium Stro 38	88 Sr trontium	89 Y Yttrium Zir 39 40	91 Zr rconium	93 Nb Niobium 41	96 Mo Molybdenum 42	Tc Technetium 43	101 Ru Ruthenium 44	103 Rh _{Rhodium} 45	106 Pd Palladium 46	108 Ag Silver 47	112 Cd Cadmium 48	115 In Indium 49	119 Sn ^{Tin} 50	122 Sb Antimony 51	128 Te Tellurium 52	127 I Iodine 53	131 Xe _{Xenon} 54
Fr226 Ra 88227 AC AC Actinium 9971 Lanthanoid series 103 Actinoid series140141144 144150152157159162165167169173175103 Actinoid series 103 Actinoid series140141144 NdPmSmEuGdTbDyHoErTmYbLu	33 1 S E sium Ba 56	137 Ba Barium	139 La Lanthanum Ha 57 * 72	178 Hf afnium	181 Ta Tantalum 73	184 W Tungsten 74	186 Re Rhenium 75	190 Os Osmium 76	192 Ir Iridium 77	195 Pt Platinum 78	197 Au _{Gold} 79	201 Hg Mercury 80	204 T 1 Thallium 81	207 Pb Lead 82	209 Bi Bismuth 83	Po Polonium 84	At Astatine 85	Rn Radon 86
71 Lanthanoid series 140 141 144 150 152 157 159 162 165 167 169 173 175 103 Actinoid series D3 Actinoid series D4 D4 <td>r F cium Ra 88</td> <td>226 Ra Radium</td> <td>227 Ac Actinium 89 †</td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	r F cium Ra 88	226 Ra Radium	227 Ac Actinium 89 †	_								1						
Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium 58 59 60 61 62 63 64 65 66 67 68 69 70 71	71 Lantha 103 Actin	nanoid noid se	series eries		140 Ce Cerium 58	141 Pr Praseodymium 59	144 Nd Neodymium 60	Pm Promethium 61	150 Sm Samarium 62	152 Eu Europium 63	157 Gd Gadolinium 64	159 Tb Terbium 65	162 Dy Dysprosium 66	165 Ho Holmium 67	167 Er Erbium 68	169 Tm Thulium 69	173 Yb Ytterbium 70	175 Lu Lutetium 71
a a = relative atomic mass 232 238 Pa Pa Pa Pu Pa Pa Cm Bk Cf Es Fm Md No Lr b b = proton (atomic) number 91 92 93 94 95 96 97 98 99 100 101 102 103	а Х b	a = X = b =	 relative atomic ma atomic symbol proton (atomic) ni 	umber	232 Th Thorium 90	Pa Protactinium 91	238 U Uranium 92	Np Neptunium 93	Pu Plutonium 94	Am Americium 95	Cm ^{Curium} 96	Bk Berkelium 97	Cf Californium 98	Es Einsteinium 99	Fm Fermium 100	Md Mendelevium 101	No Nobelium 102	Lr Lawrenciun 103