MARK SCHEME for the October/November 2011 question paper for the guidance of teachers

0654 CO-ORDINATED SCIENCES

0654/62
Paper 6 (Alternative to Practical), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

1 (a) (i) 3 readings in table i.e. 103, 66 and 45 ;; (all $3=2$ marks, any $2=1$ mark)
(ii) diffusion;
acid neutralising/reacting with the alkali/indicator colourless in acid;
(iii) $0.6,0.8,1.0$;
(iv) rate increases with smaller volume or reverse argument ; diffusion distance less/distance acid (has to) travel is less ;
(b) large surface (area);
short diffusion path ;
large blood supply ;
thin walls ;
many villi ;

2 (a) (i) (litmus turns) blue ;
(ii) ammonium chloride ; (allow $\mathrm{NH}_{4} \mathrm{Cl}$)
(b) (i) white precipitate ;
dissolves (on adding more sodium hydroxide) ; (allow turns to a colourless solution)
(ii) sulfate (ions); (allow $\mathrm{SO}_{4}{ }^{2-}$)
(iii) (precipitate) turns dark(er) (black etc.) ;
chloride (ions) ; (allow Cl^{-})
(c) either zinc sulfate ;
ammonium chloride ;
or zinc chloride ;
ammonium sulfate ;
(d) $\mathrm{NH}_{3}+\mathrm{HCl} \rightarrow \mathrm{NH}_{4} \mathrm{Cl}$

| Page 3 | Mark Scheme: Teachers' version | Syllabus |
| :---: | :---: | :---: | IGCSE - October/November 2011 0654

3 (a) (i) $62^{\circ}(\pm 1$ degree);
(ii) $32 \mathrm{~mm}(\pm 1 \mathrm{~mm})$;
(iii) $\boldsymbol{l}=101 \mathrm{~mm}(\pm 1 \mathrm{~mm})$;
$\boldsymbol{w}=60 \mathrm{~mm}(\pm 1 \mathrm{~mm})$;
(b) (i) suitable scale chosen and at least 1 axis correctly labelled ; all points plotted ± 1 small square (allow 1 error); smooth curve drawn and extended to 90°;
(ii) displacement distance shown on graph ; and measured 60 mm (or as candidate's graph) ;
(c) 'the width' or ' w ' ;

4 (a) (i) 6 mm ;
(ii) $6 / 15$;
$=0.4 \mathrm{~mm}$;
(b) (i) good quality drawing;
(ii) length taken from student's drawing;
magnification $=$ length $/ 0.4$;
$=$ answer according to student's reading ;
(c) (i) chloroplast;
(ii) photosynthesis does not take place in these cells;
(iii) vacuole labelled;
[Total: 10]

5 (a) (i) any suitable acid-base indicator. e.g. litmus, methyl orange, phenolphthalein ; (reject Universal Indicator but allow e.c.f. for correct colours)
correct colours:
litmus methyl orange phenolphthalein

in acid	in alkali
red	blue
red	yellow
colourless	red ;

(ii) sodium citrate ;
(b) (i) orange: 11.8;
lemon: 24.3 ;
grapefruit: 17.4 ; (no tolerance)
(ii) 11.8, 23.5, 12.7 (e.c.f.);
(iii) lemon, grapefruit, orange ;
(c) measured/same volume of juice ; measured/known sodium hydroxide concentration ;

6 (a) $0.7 \mathrm{~cm} ; 1.4 \mathrm{~cm} ; 1.0 \mathrm{~cm} ;$ (no tolerance)
(b) (i) when the zero adjuster moves $1(\mathrm{~mm})$, the scale will move $10(\mathrm{~mm})$;
the pointer arm is 10 times as long as the zero adjuster arm/height ; movement of pointer is 10 times larger/owtte ;
(ii) $1.8 \mathrm{~mm}, 0.7 \mathrm{~mm}, 1.4 \mathrm{~mm}, 1.0 \mathrm{~mm}$ (3 or 4 correct) ;
(c) zinc, aluminium, copper, iron ;
(d) (i) they vibrate (but stay in the same place);
(ii) heat energy is given to the atoms;
they collide with each other more (with higher energy/more force)/push away (from each other) ;

