

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 28.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use	
1	
2	
3	
4	
5	
6	
7	
8	
9	
Total	

This document consists of 27 printed pages and 1 blank page.

- 2
- 1 (a) Fig. 1.1 shows a flowering plant, and two cells from the plant.

Fig. 1.1

- (i) On Fig. 1.1, draw a line from each cell to a part of the plant in which it could be found. [2]
- (ii) State one difference between the contents of cell A and cell B, and explain the reasons for this difference.

difference	
explanation	
	[3]

(b) A grower has a rare variety of orchid with unusual flowers. She decides to produce new plants from this orchid using tissue culture.

Explain why it is better for the grower to use tissue culture to produce new plants, rather than sowing seeds she has collected from the orchid plant.

..... [3] _____

- www.papaCambridge.com 2 Melamine resin and PTFE are important plastics which have many uses in the hold industry. Wool consists of fibres which are made of protein molecules.
 - (a) All of the above substances are made of polymer molecules.

Explain the general meaning of the term polymer.

[2]

(b) Fig. 2.1 shows the displayed formula of the monomer that reacts to produce PTFE.

Fig. 2.1

(i) Fig. 2.2 shows the outer shell electrons in a carbon atom and a fluorine atom.

Fig. 2.2

Complete the bonding diagram below to show how the outer electrons are arranged in the molecule whose displayed formula is shown in Fig. 2.1.

[2]

- www.papaCambridge.com (ii) Explain why the molecule shown in Fig. 2.1 is not an example of a hydrocan
- (iii) Draw the displayed formula of a small section of a PTFE molecule.

The section that you draw must show eight fluorine atoms.

[3]

(c) Melamine resin and PTFE behave differently when they are heated. PTFE becomes softer and may melt, but melamine resin does not melt even when it is heated strongly.

Explain this difference in terms of forces between molecules. You may draw some simple diagrams if it helps you to answer this question.

..... [3] _____

www.papaCambridge.com (d) Fig. 2.3 shows a magnified section of a wool fibre. The fibre has been washed hot, temporarily hard water. The fibre is covered with tiny crystals of limescale.

(i) Complete the symbolic equation which represents the chemical reaction which causes limescale to form.

 $Ca(HCO_3)_2 \longrightarrow$

[1]

(ii) Ion exchange resins are polymers with positive ions attached to the polymer chains.

Describe and explain briefly how the process of ion exchange can be used to soften hard water.

[3]

www.papaCambridge.com (c) Fig 3.2 shows the circuit diagram of the parallel circuit used to supply electrical to two identical headlamps in the car.

The current through the filament of one headlamp is 2.4 A. The potential difference across each of the headlamps is 12V.

(i) Calculate the resistance of the headlamp filament whilst in use.

State the formula that you use and show your working.

formula used

working

		 [2]
(ii)	Calculate the total resistance of the two headlamps in parallel.	
	State the formula that you use and show your working.	
	formula used	
	working	
		[3]

.....

- 10

 4 (a) (i) Caffeine is a compound contained in coffee. Many people who consume during the day find that they have difficulty in getting to sleep at night.

 Explain why it is correct to refer to caffeine as a drug.

 [1]

 (ii) Some drugs are analgesics.

 Why might a person need to take an analgesic?

 [1]
 - (b) Some coffee drinks are sold in self-heating cans.

Fig. 4.1 shows a cross-sectional diagram of one design of self-heating can.

Fig. 4.1

www.papaCambridge.com Fig. 4.2 shows the can after it has been turned upside down and the pin through the thin metal sheet. This allows the water to fall into the calcium oxide.

Fig. 4.2

The reaction between calcium oxide and water is highly exothermic and produces the ionic compound calcium hydroxide, Ca(OH)₂.

(i) In an internet video to explain how the can works, it is stated that the water mixes with 'limestone'.

State why this information is **incorrect**.

......[1] (ii) Use the position of calcium in the Periodic Table to explain why the electrical charge of a calcium ion is +2. [3]

Show your working.

www.papaCambidge.com (ii) Calculate the mass of water which is needed to react with 224 g of calcium of Show your working.

> [2]

(a) State two features, visible on Fig. 5.1, which are characteristic of fish.

 1
 [1]

 2
 [1]

 (b) Most fish have external fertilisation.
 [1]

 (i) Explain what is meant by external fertilisation.
 [2]

 (ii) Explain why animals that live entirely on land cannot use external fertilisation.
 [2]

......[1]

5 Cichlid fish live in lakes in east Africa. Fig. 5.1 shows a cichlid fish.

www.papaCambridge.com

www.papaCambridge.com (c) Wild cichlid fish are unusual because they care for their eggs and young. The keeps the fertilised eggs in her mouth until they hatch. After the young fish hatched, she takes them back into her mouth when danger threatens. This behaviour caused by the fish's genes, and is inherited.

Suggest how natural selection in an east African lake could have led to the evolution of this behaviour.

 [3]

www.papaCambridge.com (d) Cichlid fish that have been bred in captivity can be bought as pets. Breeders ta young away from the captive mothers after they have hatched because these mother often eat their young.

Research was carried out into the behaviour of mothers in two groups of cichlid fish.

- Group A had been bred from a population of fish that had been kept in captivity for more than 30 years.
- Group **B** had recently been caught in the wild.

The researchers used 4 female fish from each group. They allowed each fish to breed as normal with male fish from the same group. They left the young fish with their mothers. All the fish were kept in the same conditions.

Table 5.1 shows the results.

Table 5.1

	group A	group B
number of mothers	4	4
number of mothers that ate their young by 1 day after hatching	3	0

(i) Explain how these results suggest that the difference in behaviour between the group A and group B fish was caused by their genes, and not by their environment.

•••••
 [2]

(ii) The researchers also measured the testosterone levels in the mother fish groups.

 18

 An orchestra is playing in a theatre.

 (a) A musician is playing the cymbals.

 image: cymbals

 image: cymbals

[2]

(ii) The man in the audience thought that the sound from the cymbals was loud because of its high frequency. He was wrong.

Explain why the man was wrong.

6

[2]

- (b) The theatre has an internal volume of 50 000 m³. The air inside it has a density of 1.3 kg/m^3 .
 - (i) Show that the mass of the air in the theatre is 65 000 kg.

State the formula that you use and show your working.

formula used

working

		422
		19
	(ii)	The air is heated by 10 °C. The specific heat capacity of air is 1000 J/kg °C.
		Calculate the energy needed to heat up the air in the theatre.
		State the formula that you use and show your working.
		formula used
		working
		[3]
(c)	Col (30	oured light is shone onto the stage. Red light has a wave speed of 3×10^8 m / s 0000000 m/s) and a wavelength of 7.5 x 10^{-7} m (0.00000075 m).
	(i)	Explain what is meant by the term wavelength.
		[1]
	(ii)	Calculate the frequency of red light.
	()	State the formula that you use and show your working.
		formula used
		working
		[5]
		[3]

ows the ele	ectron arranç T	20 gements of a able 7.1	toms of five	elements, I
atom	1 st shell	2 nd shell	3 rd shell	4 th shell
Р	2	1		
Q	2	8	1	
R	2	8	2	
S	2	8	8	1
т	2	8	8	2

(i) Explain how the electron arrangements show that all of the elements, P to T, are metals.

.....

(ii) An atom of element P has a nucleon (mass) number of 7.

State the number of neutrons in this atom.

[1]

www.papaCambridge.com (b) Fig. 7.1 shows an electrochemical cell which was made by a student in a laboratory.

(i) The student was asked to choose one of the liquids shown below as the electrolyte in her cell.

dilute sulfuric acid	hexane	sodium chloride solution		
She correctly chose sodium	chloride solution.			
Explain briefly why the other two liquids would not have been suitable.				
		[2]		

(ii) The student used her cell to investigate the relative reactivity of four magnesium, iron and two unknown metals, X and Y.

www.papaCambridge.com The student had learned that the more reactive metal always becomes the negative electrode.

The results of experiments involving all four metals are shown in Table 7.2.

experiment	negative electrode	positive electrode	cell voltage / volts
1	magnesium	iron	2.0
2	magnesium	x	2.7
3	magnesium	Y	1.6

Table 7.2

Use the results in Table 7.2 to place the four metals in order of reactivity.

most reactive	
least reactive	

[2]

BLANK PAGE

Please turn over for Question 8.

www.papaCambridge.com (a) Fig. 8.1 shows a section through a part of a person's lungs where gas exchange 8 place.

Fig. 8.1

	(i)	Name the structure labelled X .		[1]
	(ii)	Name the type of blood vessel that is shown in Fig. 8.1.		[1]
((iii)	State what is shown by arrow \mathbf{Y} , and explain why this pro	cess takes place.	
				[3]
(b)	Des the	cribe how blood travels from the heart to the lungs. Your role of the heart in this process.	description should inclu	ude
				[3]

State the formula that you use and show your working.

formula used

working

.....[2]

Pe University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of

armission to reproduce asonable effort has bee iblisher will be pleased t	
items n mad o make	
where third e by the put e amends at	
-party owned blisher (UCLE the earliest p	3
d material p ≘S) to trace o possible oppo	11
rotected by copyright ho ortunity.	19
copyright is lders, but if ;	37
any items re	55
as been sc quiring clea	87
ught anc rance ha	*9
l cleared v ve unwittin	Ke
where poss ıgly been in	
sible. Every icluded, the	

I II IV V VI VII 0 7 9 1<									Gr	oup					1			1
1 H H H H H H H H H H H H H H H H H H H	I	II											III	IV	V	VI	VII	0
7. Lining 4 9 Be Magenetian 4 9 Be Magenetian 4 11 Be Magenetian 4 11 Be Same 11 Be Same 11 Be Same 11 C cator 5 11 C cator 5								1 H Hydrogen 1										4 He Helium
23 No. 24 No. 25 No. 35 No. 35 No. 35 No. 36 No. 35 No. 36 No. 35 No. 36 No.	7 Li ^{hium} 4	9 Be Beryllium											11 B Boron 5	12 C Carbon 6	14 N Nitrogen 7	16 O Oxygen 8	19 F Fluorine 9	20 Ne Neon
39 40 45 48 51 52 55 56 59 59 64 65 70 73 75 79 80 84 20 20 21 21 21 21 23 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 27 30 26 27 33 31 119 122 128 127 131 34 36 33 36 33 36 34 128 127 131 36 36 26 26 108 106 108 112 115 119 128 128 127 131 36 <	23 Na ^{idium} 1	24 Mg Magnesium 12											27 Al Aluminium 13	28 Si Silicon 14	31 P Phosphorus 15	32 S Sulfur 16	35.5 C1 ^{Chlorine} 17	40 Ar Argon 18
85 88 89 91 93 96 101 103 106 108 112 115 119 122 128 127 131 Xedum 39 96 Nb	39 K assium	40 Ca Calcium 20	45 Sc Scandium 21 22	48 Ti Titanium	51 V Vanadium 23	52 Cr Chromium 24	55 Mn Manganese 25	56 Fe Iron 26	59 Co Cobalt 27	59 Ni Nickel 28	64 Cu ^{Copper} 29	65 Zn Zinc 30	70 Ga Gallium 31	73 Ge Germanium 32	75 As Arsenic 33	79 Se Selenium 34	80 Br Bromine 35	84 Kr Krypton 36
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	85 Rb bidium	88 Sr Strontium 38	89 Y Yttrium 2 39 40	91 Zr Zirconium	93 Nb Niobium 41	96 Mo Molybdenum 42	Tc Technetium 43	101 Ru Ruthenium 44	103 Rh Rhodium 45	106 Pd Palladium 46	108 Ag Silver 47	112 Cd Cadmium 48	115 In Indium 49	119 Sn 50	122 Sb Antimony 51	128 Te Tellurium 52	127 I Iodine 53	131 Xe _{Xenon} 54
Fr nclum226 Ra Radium 88227 AC Ac Actinium 1971 Lanthanoid series 103 Actinoid series140141144 Nedymium 60150152 Sm Actinium 150157 Actinium 150159 Actinium 150162 Actinium 160167 Ho Actinium 160169 Thilium 173 173 175 1100173 Actinium 175	33 CS esium	137 Ba Barium 56	139 La Lanthanum 57 * 72	178 Hf Hafnium	181 Ta Tantalum 73	184 W Tungsten 74	186 Re Rhenium 75	190 OS Osmium 76	192 Ir Iridium 77	195 Pt Platinum 78	197 Au _{Gold} 79	201 Hg Mercury 80	204 T 1 Thallium 81	207 Pb Lead 82	209 Bi Bismuth 83	Po Polonium 84	At Astatine 85	Rn Radon 86
140 141 144 150 152 157 159 162 165 167 169 173 175 103 Actinoid series 26 Pr Nd Pm Smarium 63 64 64 65 167 167 169 173 175 US Actinoid series Praseodymium Neodymium Promethium Smarium 63 64 64 65 167 167 169 173 175 US Actinoid series 150 161 163 167 169 173 175 103 Actinoid series 150 161 160 167 169 173 175 104 150 161 169 173 175 150 166 167 169 173 175 105 161 <	r icium	226 Ra Radium 88	227 Ac Actinium 89 †				1					1						
	71 Lan 103 Ac	nthanoid ctinoid s	d series series		140 Ce _{Cerium} 58	141 Pr Praseodymium 59	144 Nd Neodymium 60	Pm Promethium 61	150 Sm Samarium 62	152 Eu Europium 63	157 Gd Gadolinium 64	159 Tb Terbium 65	162 Dy Dysprosium 66	165 Ho Holmium 67	167 Er Erbium 68	169 Tm Thulium 69	173 Yb Ytterbium 70	175 Lu Lutetium 71
a a = relative atomic mass 232 238 Pa Pa Pa Pa Pu Pa Pa Cm Bk Cf Es Fm Md No Lr b b = proton (atomic) number 90 91 92 93 94 95 96 97 98 99 100 101 102 103	b	a a X X b	= relative atomic r (= atomic symbol = proton (atomic)	nass number	232 Th Thorium 90	Pa Protactinium 91	238 U Uranium 92	Np Neptunium 93	Pu Plutonium 94	Am Americium 95	Cm ^{Curium} 96	Bk Berkelium 97	Cf Californium 98	Es Einsteinium 99	Fm Fermium 100	Md Mendelevium 101	Nobelium 102	Lr Lawrencium 103