

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

CO-ORDINATED SCIENCES

0654/31

Paper 3 Extended Theory

May/June 2016

MARK SCHEME
Maximum Mark: 120

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2016	0654	31

1 (a) white surfaces are better reflectors of thermal energy/ white surfaces are poorer absorbers of thermal energy;

[1]

(b) kinetic to electrical;

[1]

(c) (i) efficiency = energy out/energy in or energy used = $15/100 \times 400000$; = 60000 (J);

[2]

(ii) (temperature rise =) energy/mass \times shc or $60\,000/(4\times4200)$; 3.6 (°C);

[2]

(d) tidal, wave, geothermal, HEP, (named) biomass: any two ;;

[2]

(e) (i) in space of left of infra-red;

X rays visible light	infra-red		radio waves
----------------------	-----------	--	----------------

[1]

(ii) $300\,000\,000/3 \times 10^8 \, (m/s)$;

[1]

(f) amplitude correctly indicated; either:

[1]

[Total: 11]

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2016	0654	31

2 (a) (i) sepal correctly labelled; stamen correctly labelled;

any sepal any stamen

[2]

- (ii) unable to pollinate (other flowers); [1]
- (iii) stigma/stamens inside petals; has petals; flat/lobed stigma;

[max 2]

(b) (i) 33–34;

[1]

(ii) 35-100.0 (metres);

[1]

(iii) range is greater than the others/AW;

[1]

- (iv) colonises new areas ;
 - prevents overcrowding/competition within the species;

[2]

(v) animals/edible fruits/carried on fur;

[1]

(vi) both dispersed further;

because longer in the air subject to influence of wind/ force is greater;

[2]

(c) plumule labelled;

radicle labelled;

plumule touching radicle;

cotyledon labelled;

[Total: 17]

3 (a) (i) filtration/passed through a filter;

[1]

[4]

(ii) reference to risk of (named) disease;

[1]

Page 4	Mark Scheme Cambridge IGCSE – May/June 2016	Syllabus 0654	Paper 31
(b) (i		0034	
(b) (i			[1]
(ii	hydrogen ;		[1]
(iii	(damp) litmus/(Universal) indicator paper; bleached/changes colour to white;		[2]
(iv	7 to value > 7 up to a maximum of 14; solution becomes alkaline/sodium hydroxide is produced;		[2]
(v	one shared pair ;		
	all lone pairs and no extra electrons;		[2]
			[Total: 10]
4 (a) (i	(acceleration =) change in speed/time or (acceleration =) 15/10; = 15 (m/s ²);		[2]
(ii	(force =) mass × acceleration or (force) = 2000 × 1.5 ; = 3000 ; N ;		[3]
(iii	area under graph or evidence on graph or		
	$\frac{1}{2} \times 20 \times 10$; 100 (m);		[2]
(b) (i	charge; friction; electron transfer; (complete circuit) to/from earth;		[max 2]
(ii			
	= 0.004×0.0001 ; = $0.0000004/4 \times 10^{-7}$ (C);		[2]
			[Total: 11]
			i . Otai. 11]
	<pre>= (plant) respiration ; = decomposition / decay / respiration ;</pre>		[2]

Р	age :	5	Mark Scheme	Syllabus	Paper
			Cambridge IGCSE – May/June 2016	0654	31
	(b)	(i)	CO_2 used for photosynthesis ; less CO_2 absorbed/less photosynthesis ; CO_2 produced by burning timber/ CO_2 produced by decomposition	/AW	[3]
		(ii)	because combustion produced CO ₂ ;		[1]
					[Total: 6]
6	(a)	(i)	number of protons <u>in the nucleus/one atom</u> ;		[1]
		(ii)	proton positive(ly charged) and electron negative(ly charged); proton has greater mass;		[2]
	(b)	(i)	caesium 1 and iodine 7;		[1]
		(ii)	CsI; ionic;		[2]
		(iii)	caesium atom loses one/its outer electron; iodine atom gains one electron;		[2]
	(c)	(i)	the higher the temperature the greater mass of solid dissolves ;		[1]
		(ii)	130 (g)		[1]
		(iii)	calculation of M_r [CsI] $133 + 127/260$; change volume units from 100cm^3 to 40cm^3 to 40cm^3 mass dissolving in 40cm^3 = 40cm^3 to 40cm^3 calculation of concentration in moles/ 40cm^3 to 40cm^3 calculation of 40cm^3 calculation of 40cm^3 calculation of concentrarion in 40cm^3 calculation of concentrarion in 40cm^3 to 40cm^3 calculation of 40cm^3 concentration = 40cm^3 to 40cm^3 concentration = 40cm^3 concentration = 40cm^3 to 40cm^3 concentration = 40cm^3 concentratio		[3] [Total: 13]
7	(a)	iror glas cop	stic/glass ss/plastic per per prect = 2 marks, 3 or 2 correct = 1 mark ;;		[2]
	(b)	(i)	54 ;		[1]
			⁵⁶ ₂₆ Fe		[1]
		\ /	20		۲.1

			Cambridge IGCSE – May/June 2016	0654	31
		(iii)	time taken for a sample of radioactive isotope to decay by half/ time taken for count rate of radioactive isotope to decrease by half;		[1]
	(c)		aporation can occur at any temperature/ ling only happens at the boiling point ;		
			aporation happens only at the surface/ ling happens throughout the liquid;		
			aporation lets only the molecules with the highest kinetic energy out/ling taken energy in (endothermic) to occur;		
			aporation can occur using the internal energy of the system/ ling requires an external source of heat;		
			aporation produces cooling / ling does not produce cooling ;		
			aporation is a slow process/ ling is a rapid process ;		[max 1]
	(d)	ref	erence to induced magnetism ;		[1]
	(e)		no mark) ular arrangement ;		[1]
	(f)		rkable method of measurement of displacement; to <u>displacement</u> /subtraction of two volumes;		[2] [Total: 10]
8	(a)		<u>esity</u> ;		
			cking <u>coronary</u> arteries ; ading to) (coronary) heart disease ;		[3]
	(b)	(i)	liver labelled on Fig. 1.1;		[1]
		(ii)	emulsifies; increases surface area for, enzyme action/faster digestion;		[2]
		(iii)	large surface area ; thin wall ; lacteals ;		[max 2]
					[Total: 8]
9	(a)	(i)	transition (metals/series/elements);		[1]

Syllabus

Paper

Page 6

			Cambridge IGCSE – May/June 2016	0654	31
		(ii)	elements or their compounds can behave as catalysts; compounds have colours other than white;		[2]
		(iii)	iron atoms ; reference to electrons being lost ;		[2]
		(iv)	this <u>alloy</u> does not rust;		[1]
	b	(i)	blast furnace;		[1]
		(ii)	$Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$ formulae ; balancing ;		[2]
					[Total: 9]
10	(a)	(i)	ray of light correctly drawn from Y to X;		[1]
		(ii)	normal correctly drawn;		[1]
		(iii)	angle of incidence correctly labelled;		[1]
		(iv)	same size as object, upright, virtual;		[1]
	(b)		npression: particles close together/rarefaction: further apart		
		OR con	npression: region of high pressure/rarefaction: region of low pressure	€;	[1]
	(c)	(i)	ammeter and voltmeter ;		[1]
		(ii)	$1/R_T = 1/R_1 + 1/R_2$ or $1/R_T = 1/12 + 1/4 = 1/3$ or $R_T = R_1R_2/(R_1 + R_2)$ or $R_T = 48/16$;		
			$R_T = 3 (\Omega)$;		[2]
					[Total: 8]
11	(a)	(i)	FF and Ff;		[1]
		(ii)	have ff genotype ;		[1]
	(b)	(i)	camouflage/AW;		[1]
		(ii)	less well adapted/less likely to survive/more likely to be preyed on (so) less likely to reproduce ;	;	[2]

Syllabus

Paper

Page 7

Page 8		3	Mark Scheme	Syllabus	Paper
			Cambridge IGCSE – May/June 2016	0654	31
	(c)	(co	rrect gametes) H, h, H, h; rrect genotypes) HH, Hh, Hh, hh; rrect phenotypes) short fur, short fur, long fur; rrect ratio) 3 short : 1 long;		[4] [Total: 9]
12	(a)	(i)	L diamond and M graphite ;		[1]
		(ii)	contains only one type of atom;		[1]
	(iii)	(M) reference to the layer structure; reference to (layers) sliding; reference to weak (attractive) forces (between layers);		[max 2]
	(b)	(i)	(reactants) energy is transferred <u>from reactants</u> ; as thermal energy/reaction is exothermic;		[2]
		(ii)	powder has a large surface area; the idea that the probability/frequency of collision (between oxyger molecules and the solid surface/carbon atoms) is higher;	1	[2]
					[Total: 8]