

Candidates answer on the Question Paper.

No Additional Materials are required.

a

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** questions. A copy of the Periodic Table is printed on page 24.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

For Exam	iner's Use
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
Total	

This document consists of 21 printed pages and 3 blank pages.

1 (a) Complete the following sentences choosing from the words below.

(b)

				420	
		2		N.D.	
Со	mplete the following se	entences choosing	g from the words	below.	°Co
	amps	coulombs	current	parallel	
	potential differen	nce resist	ance	series	
Fle	ctric charge is measu	red in			
Δ fl	ow of electric charge i	is called a		· · · ·	
A II				······································	
Αv	oltmeter is used to me	easure		······································	
Αv	oltmeter is connected	in		with the component.	[4]
A s app	tudent measures the lied across it.	current passing th	nrough a wire wl	nen a potential differend	ce is
(i)	Calculate the resista and the current measured	ance of the wire wared is 0.4 A.	hen a potential c	lifference of 0.3 V is app	olied
	State the formula that	at you use and sho	w your working.		
	formula used				
	working				
				Ω	[2]
(ii)	Calculate the quantit	ty of charge which	flows through the	e wire in one minute.	
	State the formula that	at you use and sho	w your working.		
	formula used				
	working				
	Ŭ				
				C	[2]

www.papaCambridge.com 2 Fig. 2.1 shows a small gas burner which can be used to heat water or food contain metal cooking pot. The fuel used in this burner is the hydrocarbon butane, C₄H₁₀.

Fig. 2.1

(a) (i) Butane is obtained from crude oil (petroleum). Name the process which is used to separate butane from the other hydrocarbons in crude oil. [1] (ii) State one important use, other than as fuels, of hydrocarbons obtained from crude oil.[1] (iii) Butane is normally a gas at room temperature. In the type of burner shown in Fig. 2.1, butane has been condensed into a liquid. Suggest what must be done to gaseous butane to turn it into a liquid. [1] (b) Name the two compounds which are formed when butane is completely burnt. [2]

www.papaCambridge.com 3 Dairy cattle are kept to produce milk. The milk is produced and stored in the cow's uc

4

Fig. 3.1

(a) State two features of a dairy cow that are visible in Fig. 3.1 and show it is a mammal. 1. 2. _____ [2] (b) Milk contains a lot of protein, fat and calcium. Outline the function of each of these substances in the human diet. (i) protein [1] (ii) fat (iii) calcium[1]

			6 MANN D	
4	(a)	lodi pati hou	ine-123 and iodine-131 are radioactive isotopes of iodine that are used interview isotopes in medicine. Iodine-123 emits gamma radiation and has a half-life of urs. Iodine-131 emits both beta and gamma radiation and has a half-life of 8 days.	For iner's
		(i)	What is the meaning of the term <i>half-life</i> ?	Se.co.
			[1]	12
		(ii)	State and explain two reasons why it would be safer for a patient to use iodine-123 rather than iodine-131.	
			1	_
			2	
			2.	
			[0]	
	(b)	The	ere are people working near the radioactive source.	
		(i)	How might these workers be harmed by radiation from this radioactive source?	
			[1]	
		(ii)	Give one way in which these workers could be protected from the radiation emitted.	
			[1]	

BLANK PAGE

Please turn over for question 5

www.papaCambridge.com 8 (a) What is meant by a *period* in the Periodic Table? (b) Table 5.1 shows the numbers of protons, neutrons and electrons in four atoms, P, Q, R and S. Table 5.1 atom protons neutrons electrons Ρ 17 18 18 Q 11 12 10 18 17 R 17 S 16 16 16 (i) Explain which atom, P, Q, R or S, is an ion with a positive charge. [2] (ii) Explain which atom, P, Q, R or S, is a neutral atom with nucleon (mass) number of 35. [2] (iii) An element is in Group 3 of the Periodic Table. State and explain which one of the diagrams below shows an atom of this element.

5

[2]

atom 3

atom 2

atom 1

(c) The diagram in Fig. 5.1 shows how ions are arranged in the compound

chloride.

www.papaCambridge.com

[2]

(i) What name is given to the type of structure in sodium chloride?

(ii) Describe briefly how chlorine gas could be made from sodium chloride crystals.

.....

6 Fig. 6.1 shows the structure of an insect-pollinated flower.

10

(a) Outline the functions of the parts of the flower labelled A, B and C.

Α	
в	
С	 [3]

(b) The flower shown in Fig. 6.1 is pollinated with pollen that came from another flower on the same plant.

Is this an example of asexual reproduction or sexual reproduction?

Explain your answer.

type of reproduction ______

- [1]
- (c) After pollination, structure **D** is fertilised.

What will structure **D** develop into after it has been fertilised?

.....

[1]

www.papacambridge.com

www.papaCambridge.com (d) The ovary of a flower develops into a fruit after fertilisation. Fruits help to dispension seeds inside them.

Draw a fruit that is dispersed by animals.

Label the fruit to explain how it is adapted for animal dispersal.

(e) A student carried out an experiment to find out what conditions some lettuce seeds needed in order to germinate.

Table 6.1 shows his results.

Tabl	e 6	.1
------	-----	----

set of seeds	air present	soil present	water present	light present	did seeds germinate?
Α	yes	yes	yes	yes	yes
В	no	yes	yes	yes	no
С	yes	no	yes	yes	yes
D	yes	yes	no	yes	no
E	yes	yes	yes	no	no

(i) Which conditions did the lettuce seeds need for germination?

[2]

(ii) State one factor that the student should have kept constant in his experiment.

[1]

www.papaCambridge.com 12 7 The arrows in Fig. 7.1 show the horizontal forces acting on a car moving forwards. In each case the length of the arrow indicates the size of the force. В Α С D Fig. 7.1 (a) Which diagram or diagrams show a car which is (i) slowing down, [1] (ii) accelerating, [1] (iii) travelling at constant speed? [1] (b) (i) A car of mass 1000 kg travels 320 m in 20 s. Show that the speed of the car is 16 m/s. State the formula that you use and show your working. formula used working [1]

www.papaCambridge.com A student added four substances, A, B, C and D, to four separate beakers each 8 25 cm^3 of dilute sulphuric acid as shown in Fig. 8.1.

The observations which the student made are shown in Table 8.1.

substance	observations	pH of the mixture after any reaction is complete
А	gas given off which turns limewater milkycolourless solution formed	2
В	gas given off which turns limewater milkyblue solution formed	3
С	 gas given off which burns with a squeaky pop when ignited colourless solution formed 	3
D	no gas given offblue solution formed	4

Table	8.1
-------	-----

(a) (i) State and explain in which experiment the greatest amount of acid was neutralised.

..... [2]

		422	
		15	
	(ii)	Explain which one of the substances, A , B , C or D , could have been magicarbonate.	Cambrid
			[2]
	(iii)	Explain which one of the substances, A , B , C or D , could have been copper(oxide.	(II)
			[2]
(b)	Sul	phuric acid occurs in acid rain which forms when rain falls through polluted air.	
	Exp rain	plain how the burning of a fossil fuel, such as coal, can lead to the formation of ac	cid
	•••••		[2]
(c)	Dilu	ite sulphuric acid is a solution of hydrogen ions and sulphate ions in water.	
	Des	scribe a chemical test which would show that sulphuric acid contains sulphate ions	s.

					12	
			17		N. Day	
(d)	Complete the sits leaves. Use	sentences to explain some of the words	n how water is abs listed below.	orbed by a plant	and transport	Cant
	guard cells	leaf epidermis	leaves	phloem	respiration	
	root hairs	stem	transpiration	xylem		
	Water enters a	a plant through its		he water moves	s through the cel	ls
	towards the ce	entre of the root. It e	nters the	\	vessels, which a	re
	empty tubes le	eading up through t	he root and stem a	nd into the leave	es. The water	is
	pulled up beca	iuse	is happeni	ng in the leaves		[3]
(e)	Outline two wa	ays in which the tiss	ues in a leaf are su	ipported.		
	2.					
						[2]
(f)	The leaf cell photosynthesis	ls shown in Fig. s. An animal eats th	9.1 contain sta e leaf.	rch, which has	s been made	by
	(i) Name the	enzyme in the anim	nal's digestive syste	em that digests	starch.	
						[1]
	(ii) Name the	substance that is p	roduced when star	ch is digested.		
						[1]

	42	
	18 × D	
Son	ne children are swimming in a swimming pool.	Car
(a)	When they are under the water, they can still hear sounds from the surface.	
	Suggest how sound travels through water.	
		[2]
(b)	The children make some small waves on the surface of the water.	
	Are these waves longitudinal or transverse?	
	Explain your answer using a labelled diagram.	
		[2]
(c)	When the children leave the need, the water on their bodies evenerates	
(0)	Explain how this evanoration takes place in terms of particles	
		[2]
		[4]

Fig. 10.1

(i) The ray of light passes through the surface of the water and up into the air.

On the diagram, draw the path of the ray as it leaves the water and goes through the air. [2]

(ii) State the name of the process in (i).

[1]

		ANA ANA
		20
11	(a)	Cellulose is a compound found in plants. Plants obtain the carbon atoms they need to make cellulose from carbon dioxide with is taken in through their leaves.
		Name the other elements which are present in cellulose. [2]
	(b)	Amino acids are compounds found in all living organisms. The chemical formula of a typical amino acid is $C_2H_5O_2N$.
		(i) Explain why the nitrogen atoms needed by the plant to make amino acids cannot be obtained directly from the nitrogen molecules in the air.
		[1]
		(ii) Describe briefly how protein molecules are formed from amino acid molecules.
		[1]
	(c)	Many of the nutrients that plants need for growth are obtained from the soil. Some of these nutrients are salts released when rocks are broken down by weathering followed by erosion.
		Describe one way in which rocks are weathered by physical processes.
		[2]
		[2]

- www.papacambridge.com (d) When water flows over certain types of rock, compounds enter the water ma hard.
 - (i) Name a metallic element whose ions cause hardness in water.

(ii) A student carries out experiments into removing hardness from water. He measures hardness by finding the volume of soap solution which must be added to equal volumes of water in order to form a permanent lather.

His experiments and results are shown in Table 11.1.

experiment	details of experiment	soap volume needed for permanent lather /cm ³
1	control (no water treatment)	12.0
2	0.5 g of sodium carbonate dissolved in the water	4.0
3	5.0 g of sodium chloride dissolved in the water	12.0
4	1.0 g of sodium carbonate dissolved in the water	0.5

Table 11.1

Explain which of the student's experiments was the most successful in removing hardness.

..... [2]

BLANK PAGE

BLANK PAGE

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the	Permission to reproduce items where third-party owned material protected by copyright is included has been sought and or reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have publisher will be pleased to make amends at the earliest possible opportunity.	
oridge Assessment is the brand name of University of	has been sought and cleared where possible. Every equiring clearance have unwittingly been included, the	

								Gr	oup								
	II											III	IV	V	VI	VII	0
							1 H Hydrogen 1										4 He Helium
i ım	9 Be Beryllium							_				11 B Boron 5	12 C Carbon 6	14 N Nitrogen 7	16 O Oxygen 8	19 F Fluorine 9	20 Ne Neon
a Im	24 Mg Magnesium 12	1										27 Aluminium 13	28 Si Silicon 14	31 P Phosphorus 15	32 S Sulphur 16	35.5 C1 ^{Chlorine} 17	40 Ar Argon 18
ium	40 Ca Calcium 20	45 Sc Scandium 21	48 Ti Titanium 22	51 V Vanadium 23	52 Cr Chromium 24	55 Mn Manganese 25	56 Fe Iron 26	59 Co Cobalt 27	59 Ni Nickel 28	64 Cu Copper 29	65 Zn Zinc 30	70 Ga Gallium 31	73 Ge Germanium 32	75 As Arsenic 33	79 Se Selenium 34	80 Br Bromine 35	84 Kr Krypton 36
) um	88 Sr Strontium 38	89 Y Yttrium 39	91 Zr Zirconium 40	93 Nb Niobium 41	96 Mo Molybdenum 42	Tc Technetium 43	101 Ru Ruthenium 44	103 Rh Rhodium 45	106 Pd Palladium 46	108 Ag Silver 47	112 Cd Cadmium 48	115 In Indium 49	119 Sn 50	122 Sb Antimony 51	128 Te Tellurium 52	127 I Iodine 53	131 Xe Xenon 54
3 S .ium	137 Ba Barium 56	139 La Lanthanum 57 *	178 Hf ^{Hafnium} 72	181 Ta Tantalum 73	184 W Tungsten 74	186 Re Rhenium 75	190 Os Osmium 76	192 Ir Iridium 77	195 Pt Platinum 78	197 Au Gold 79	201 Hg Mercury 80	204 T 1 Thallium 81	207 Pb Lead 82	209 Bi Bismuth 83	Polonium 84	At Astatine 85	Rn Radon 86
um	226 Ra Radium 88	227 Ac Actinium 89 †															
71 La 103 J	anthano Actinoid	id series series		140 Ce Cerium 58	141 Pr Praseodymium 59	144 Nd Neodymium 60	Pm Promethium 61	150 Sm Samarium 62	152 Eu Europium 63	157 Gd Gadolinium 64	159 Tb Terbium 65	162 Dy Dysprosium 66	165 Ho Holmium 67	167 Er Erbium 68	169 Tm Thulium 69	173 Yb Ytterbium 70	175 Lu Lutetium 71
b	a a X X	a = relative atom X = atomic symb b = proton (atom	nic mass bol nic) number	232 Th Thorium 90	Pa Protactinium 91	238 U Uranium 92	Np Neptunium 93	Pu Plutonium 94	Am Americium 95	Cm Curium 96	Bk Berkelium 97	Cf Californium 98	Es Einsteinium 99	Fm Fermium 100	Md Mendelevium 101	Nobelium 102	Lr Lawrenciun 103
				The v	olume of	one mole	of any ga	as is 24 d	m ³ at roo	m temper	ature and	l pressure	e (r.t.p.).			100:305	mane