CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the May/June 2013 series

0654 CO-ORDINATED SCIENCES

0654/33 Paper 3 (Extended Theory), maximum raw mark 120

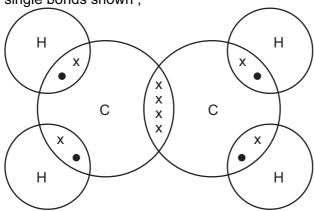
This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2013	0654	33


- 1 (a) (i) A labelled between 0s and 20s; [1]
 - (ii) working on graph / calculation of area under graph; 280 m; [2]
 - **(b) (i)** energy input (to panel) from sun/energy from sun (to panel), varies; [1]
 - (ii) 6 hours (as graph worked); [1]
 - (iii) efficiency = (useful) (energy) output/(energy) input; energy input = 2000/0.2 = 10000 J/s; [2]
 - (iv) (kinetic energy =) $\frac{1}{2}$ mv²; = $\frac{1}{2} \times 750 \times 7 \times 7 = 18375$ J; [2]
 - (c) (i) voltmeter in parallel with photocell and correct symbol; [1]
 - (ii) power = voltage × current; = 2.5 × 0.2 = 0.5 W; [2]

[Total: 12]

[1]

[2]

- 2 (a) <u>fractional distillation</u>;
 - (b) (i) C₈H₁₈; total number of each type of atom must be same on both sides of equation; [2]
 - (ii) double bond shown; single bonds shown;

(max 1 mark if symbols missing or incorrect)

(c) (i) $480 \div 24000$; = 0.02;

Page 3			Paper
	IGCSE – May/June 2013	0654	33
(ii)	[3]		
			[Total: 10]
a) (i)	chemical (energy); (accept: potential)		[1]
(ii)	1 (%);		[1]
(iii)	as heat ; movement/kinetic ;	eaten ;	[max 2]
(b)	less photosynthesis (as fewer trees); so less carbon dioxide removed/used; trees burned; producing carbon dioxide;		
	·	greenhouse effect/t	raps [max 3]
			[Total: 7]
			[10441.7]
a) (i)	Mg + 2HC $l \rightarrow MgCl_2 + H_2;;;$ (LHS; RHS; and balanced;)		[3]
(ii)	(heat released by) exothermic reaction; chemical energy transferred into heat energy;		[max 2]
o) (i)	2.5;		[1]
(ii)	reactions occur when molecules collide; if speed increases collision frequency increases;	es increases ;	
	which leads to greater chance of reaction;		[max 3]
			[Total: 9]
a) (i)	$3 \times 10^5 \text{ (km/s)}$;		[1]
(ii)	infra-red;		[1]
(iii)	wavelength/frequency;		[1]
a	(ii) (ii) (iii) (iii) (iii)	 (ii) number of moles of ethene used = 0.02 ÷ 2 = 0.01; M_r ethene = (12 × 2) + (1 × 4) = 28; mass of 0.01 moles ethene = 28 × 0.01 = 0.28 g; (i) chemical (energy); (accept: potential) (ii) 1 (%); (iii) respiration; as heat; movement/kinetic; not all organisms eaten/not all parts of organisms entent all food digested/some lost in faeces; (b) less photosynthesis (as fewer trees); so less carbon dioxide removed/used; trees burned; producing carbon dioxide; more carbon dioxide in atmosphere contributes to heat; (i) Mg + 2HCl → MgCl₂ + H₂;;; (LHS; RHS; and balanced;) (ii) heat energy has been transferred/released into the (heat released by) exothermic reaction; chemical energy transferred into heat energy; products have lower chemical energy content than the interpolation occur when molecules collide; if temperature increases then speed/KE of molecul reactions occur when molecules collide; if speed increases collision frequency increases; and collision energy increases; which leads to greater chance of reaction; (ii) 3 × 10⁵ (km/s); 	(ii) number of moles of ethene used = 0.02 ÷ 2 = 0.01; M, ethene = (12 × 2) + (1 × 4) = 28; mass of 0.01 moles ethene = 28 × 0.01 = 0.28 g; (ii) chemical (energy); (accept: potential) (ii) 1 (%); (iii) respiration; as heat; movement/ kinetic; not all organisms eaten/not all parts of organisms eaten; not all food digested/ some lost in faeces; (b) less photosynthesis (as fewer trees); so less carbon dioxide removed/ used; trees burned; producing carbon dioxide; more carbon dioxide in atmosphere contributes to greenhouse effect/theat; (ii) Mg + 2HCl → MgCl₂ + H₂;;; (LHS; RHS; and balanced;) (iii) heat energy has been transferred/released into the mixture; (heat released by) exothermic reaction; chemical energy transferred into heat energy; products have lower chemical energy content than reactants; (i) (i) 2.5; (ii) the higher the temperature the higher the rate; if temperature increases then speed / KE of molecules increases; reactions occur when molecules collide; if speed increases collision frequency increases; and collision energy increases; which leads to greater chance of reaction;

	J	IGCSE – May/June 2013	0654	33
(b)	alpha ionisa cance	alpha radiation and beta radiation pass easily through a radiation damages cells in a very localised part of the ation does not always kill cells – sometimes it causes er occurs when a large number of cells are killed ose of radiation received depends on the length of exp	e body hem to mutate	□ 전 전
	(all fi	ve boxes correct = 2 marks, four boxes correct = 1 ma	rk) ;;	[2]
(c)	half-li worki	ife = 90 (minutes) ; ing ;		[2]
(d)		oolonium –210 (no mark) argest/longest half-life ;		[1]
		polonium and radon, (no mark) alpha is most ionising/both emit alpha ;		[1]
(e)	expla A and B nee	inject into a person as a medical tracer; ination d C need long half-lives to work; eds short half-life so that it does not remain in body/or ong enough so that it can be monitored;	wtte ;	[max 3] [Total: 12]
(a)	arrow arrow arrow	on A pointing downwards on B pointing downwards on C pointing upwards on D pointing upwards our correct for two marks, two or three correct for one in	mark) ;;	[2]
(b)	(i) L	ırea/carbon dioxide ;		[1]
	r	vater ; one from – amino acid/glucose/fatty acid/glycerol/n named vitamin ; antibodies ;	amed relevant ele	ment/ [max 2]
(c)	b	by red blood cells ; by haemoglobin ; combined with haemoglobin/as oxyhaemoglobin ;		[max 2]

Mark Scheme

Syllabus

Paper

Page 4

6

	(ii)	reference to diffusion; shorter distance to travel (therefore less time taken (for diffusion)); more surface area (therefore more can move across at once); greater, rate of more, blood flow (so oxygen taken away faster); idea that this maintains diffusion gradient; comparative use of figures, e.g. distance across surface in lungs is 7 times smaller than in placenta;	[max 4]
			[Total: 11]
7 (a)	soc	oper unreactive/stable enough to exist as metal; lium and magnesium react easily with, non-metals e.g. oxygen; . 1 general reactivity mark and 1 mark for relevant extra detail)	[2]
(b)	(i)	alloy;	[1]
	(ii)	harder tin atoms disrupt layers of copper atoms; making it more difficult for layers to move over each other/which means more energy required to make layers slip;	[2]
	(iii)	mixture proportions of tin and copper can vary/no fixed chemical formula; OR compound atoms of different elements are bonded; some properties of bronze are different from either tin or copper;	[max 1]
(c)	(i)	spoon/electrode S is a cathode/negatively charged; so attracts positive copper ions; copper ions gain electrons; copper ions gain two electrons/are discharged/converted into copper atoms; copper atoms bond together/stick to steel spoon;	[max 4]
	(ii)	oxygen/carbon dioxide/carbon monoxide;	[1]
	(iv)	weigh the electrode before and after the process; decrease in mass provides the required evidence; OR use micrometer to find/measure electrode thickness before and after the	
		process; decrease in thickness provides the required evidence;	[max 2]
			[Total: 13]

Mark Scheme IGCSE – May/June 2013

Page 5

Syllabus 0654 Paper 33

			1000=	
8	(a)	(i)	(energy =) power × time; 1100 × 40 × 60; = 2640000 (J);	[3]
		(ii)	electricity could be produced by burning fossil fuels/named example; (fossil) fuels when burned/power stations release CO_2 ; reduced demand for (fossil) fuels/electricity reduces amount of CO_2 released;	[max 3]
	(b)	(i)	(R =) V/I ; $R = 220/3 = 73 \Omega ;$	[2]
		(ii)	charge = current × time ; = 3 × 12 × 60 = 2160 C ;	[2]
	(c)	(i)	liquid particles touching and similar size; gas particles not touching; random arrangement for both;	[3]
		(ii)	faster moving molecules; can do more work against attractive forces/can break bonds between them/ owtte; break free/separate turn into gas/leave liquid; energy/heat/frem surroundings) used for this;	[may 2]
			energy/heat (from surroundings) used for this;	[max 3] otal: 15]
			<u>-</u>	-
9	(a)	(i)	from the air ; by diffusion ; through stomata ;	[3]
		(ii)	from the soil; absorbed by root hairs; by osmosis (into roots/xylem); up xylem to leaves;	[m. av. 2]
			pulled up by transpiration ;	[max 3]
	(b)	(i)	breakdown of large molecules; so that they can be absorbed/become soluble;	[2]
		(ii)	enzymes; proteases; trypsin/pepsin;	[max 2]

Mark Scheme IGCSE – May/June 2013

Page 6

Syllabus 0654

Paper 33

	Page 7					Paper
				IGCSE – May/June 2013	0654	33
	(c)	(i)	as a	control/to make sure the only variable was the sub	stance used ;	[1]
	(ii) (iii)		they	[1]		
			pitch	ners have slippery rim (so insects fall in); ners have downward-pointing spines (so insects can attracts insects;	't crawl out) ;	
			avp	;		[max 3]
						[Total: 15]
10	(a)	(i)	redu calci	2 from either part: ce acidity/increase pH/neutralise acids; ium carbonate reacts with/neutralises acids; ases nutrients from soil;		
			pota	ease plant nutrient levels/fertilises; ssium compounds are essential for healthy plant gro ralises acids (if not credited above);	owth/increases yi	eld ; [max 3]
		(ii)		ssium ion is K ⁺ /charges must balance ; arbonate is CO ₃ ²⁻ ;		[2]
	(b)	(i)	iron	· ,		[1]
		(ii)		gen and hydrogen too unreactive/react too slowly (lyst speeds up the reaction/allows the reaction to o	•	[max 1]
		(iii)	nitric	c acid ;		[1]
						[Total: 8]
11	pe rat OF up se		ak bet e zero and d	es up and then down again ; ween 30 and 45 °C ; (by 60 °C or sensible figure) ; own (including two straight lines) ;		
				scale shown ; hape ending at zero ;		[max 3]
	(b)	(i)	skin	/brain/hypothalamus ;		[1]
		(ii)		ract/shiver ; ase heat ;		[2]
	(iii)			sor/receptor detects a change from normal/example gs about a response that returns factor towards norr		[2]
						[Total: 8]