

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

dridge con

	_
*	
••	
4	
J	
U 1	
9	
•	
_	
4	
4	
₩.	
\sim	
•	
7	
•	
~	
4	
9	
v	

NAME					
CENTRE			CANDIDATE		
NUMBER			NUMBER	'	

CO-ORDINATED SCIENCES

0654/23

Paper 2 (Core)

May/June 2010

2 hours

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 24.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Exam	iner's Use
1	
2	
3	
4	
5	
6	
7	
8	
9	
Total	

This document consists of 23 printed pages and 1 blank page.

1

WANN, PADAC CAMBRIDGE, COM (a) Complete the diagram in Fig. 1.1 to show the energy transfers in a power fuelled by a nuclear reactor. nuclear heat electrical [1] Fig. 1.1 (b) Name one nuclear fuel. [1] (c) (i) Coal is a non-renewable energy source. Explain what is meant by the term non-renewable. _____[1] (ii) State one example of a renewable energy source that can be used to generate electricity. [1] (iii) State **one** advantage of a nuclear power station over a coal-burning power station. [1] (d) Explain why electricity is transmitted at high voltage. Your answer should include ideas about current, voltage and energy loss.

[2]

(e)		of ntium		waste	produc	ts foi	rmed	in	nuclea	power	stations	is	the		Cal
		ntium lear fi			ner wast	e pro	ducts	fror	n nucle	ar reacto	ors, has b	een	prod	luced	l by
	(i)	State	e wha	at happ	ens to th	e nuc	lei of	aton	ns durin	g nuclea	r fission.				
															[1]
	(ii)	Stror	ntium	-90 de	cays by I	oeta p	article	e em	nission.	What is	a beta par	ticle	?		
															[1]

For iner's

(a)	In Fig. 2. body.	1 the substances in the l	4 eft hand colum	nn are all proteins found in th	A Papa Camb	For
	-	s to link each protein to it	s function.		10	Tide
		protein		function		S. COM
		haemoglobin		breaks down starch to maltose		
			-			ı
		insulin		transports oxygen		
	<u></u>		1			
		amylase		reduces blood glucose level		
					[2]	
			Fig. 2.1			
(b)	List the fo	our elements found in all p	oroteins.			
					[2]	

(c) Two food samples were tested with iodine solution, Benedict's reagent and biuret reagent. The results are shown in Table 2.1.

Table 2.1

	food sample A	food sample B
colour after iodine test	brown	blue-black
colour after Benedict's test	orange-red	orange-red
colour after biuret test	purple	blue

[2
Explain your answer.
State which food or foods contained protein.

(d)	When a person eats more protein than can be immediately used in the box excess protein is broken down to produce the waste product urea.
	Name the organ in which urea is produced. [1]
(e)	Suggest how a nitrogen atom in a molecule of nitrogen gas in the atmosphere could become part of a protein in a plant.

www.Papa Cambridge.com 3 (a) Electrolysis is used in industry to convert the raw material, salt (sodium chloride three valuable products.

Two of these products are chlorine and sodium hydroxide solution.

A simplified diagram of the apparatus is shown in Fig. 3.1.

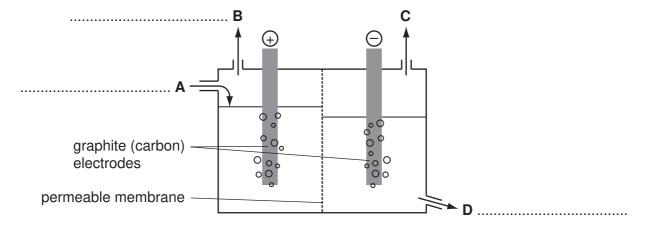
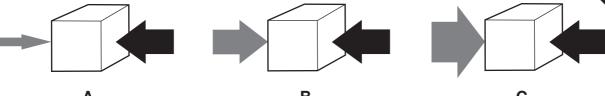


Fig. 3.1

(i)	The product which leaves the apparatus at point C is a colourless gas which burns with a squeaky pop.
	Otata the manner on alcomical formands of this man


	State the name or chemical formula of this gas.
	[1]
(ii)	Suggest the names or formulae of the chemicals found at points ${\bf A},{\bf B}$ and ${\bf D}$ in Fig. 3.1.
	Write your answers on the diagram in Fig. 3.1. [2]
iii)	State two properties of graphite (carbon) which make it a suitable material from which to make the electrodes.
	[2]
iv)	Describe a safe chemical test for chlorine.

		my
	7	
cralose is a compound wh nk. Table 3.1 contains info	rmation about sucrose an	
	Table 3.1	
	chemical formula	kilojoules in 1 gram
sucrose	C ₁₂ H ₂₂ O ₁₁	17
sucralose	C ₁₂ H ₁₉ O ₈ C <i>l</i> ₃	0

(i)	Explain which compound, sucrose or sucralose, is a carbohydrate.
	[1]
(ii)	State the total number of atoms which are combined in one molecule of sucralose.
	[1]
(iii)	Sweeteners containing sucralose are more expensive than sucrose, but one gram tastes much sweeter than one gram of sucrose.
	Suggest why people might prefer to use sweeteners containing sucralose rather than sucrose.
	[2]

For

4 (a) Fig. 4.1 shows forces acting on three blocks. The size of an arrow indicates the the force it represents.

_										
	Α		В	C						
			Fig. 4.1							
(i)	i) Which of the blocks would start to move?									
	Explain your	answer.								
	blocks									
	explanation									
				[[2]					
(ii)	On the block motion.	s in Fig. 4.1 that	move, draw and	other arrow to show the direction	of [1]					
(iii)	Name one fo	rce which acts do	wnwards on all t	he blocks.						
				[[1]					
(iv)	State the sou	rce of this force.								
				[[1]					
(b) On	e of the blocks	has a mass of 72	20 g and a volum	e of 80 cm ³ .						
Cal	culate the den	sity of the block.								
Sta	te the formula	that you use and	show your worki	ng.						
	formula									
	working									
				g/cm ³ [[2]					

(c) A student tested a block to see if it conducted electricity.

www.PapaCambridge.com Draw a simple circuit which the student could build for this purpose. Use the corre circuit symbols.

(a) Fig. 5.1 shows how light intensity affects the rate of photosynthesis of a plant. 5

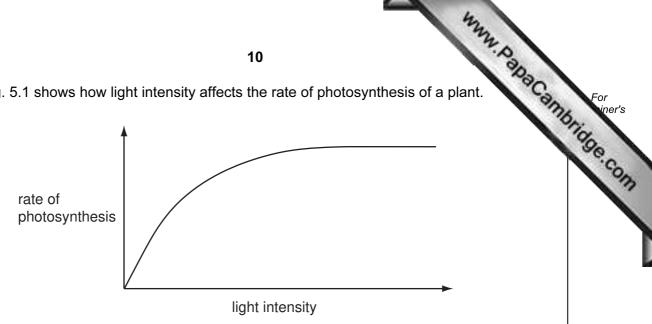


Fig. 5.1

(i)	Describe the relationship between light intensity and the rate of photosynthesis.	
		[2]
(ii)	Explain why light is needed for photosynthesis.	
		•••••
		 [2]

(b) The diagrams in Fig. 5.2 show sections through two leaves on the same tree. The two diagrams are drawn to the same scale.

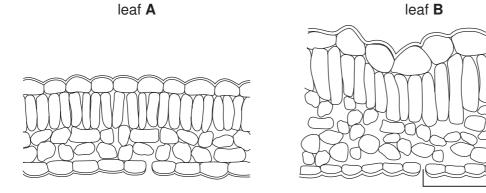


Fig. 5.2

(i) Name the parts labelled P, Q and R on Fig. 5.2.

Р	
Q	

[3]

cuticle Ρ

palisade cell

Q

R

		May	
		11	
	(ii)	Leaf A was taken from a part of the tree that was always in the shade. Leaf B was taken from a part of the tree that received plenty of sunlight. Both leaves are put into bright light. Using Fig. 5.2, suggest in which leaf photosynthesis will happen faster in the conditions. Explain your answer.	Can
		Both leaves are put into bright light.	
		Using Fig. 5.2, suggest in which leaf photosynthesis will happen faster in th conditions. Explain your answer.	ese
		leaf	
		explanation	
			[1]
	(iii)	Suggest why leaf B has a thicker cuticle than leaf A .	
			[2]
	(iv)	Describe how carbon dioxide travels to a palisade cell in a leaf.	
			[3]
(c)	The	e differences between leaf A and leaf B are an example of variation.	
` ,		te whether this variation is caused by	
	•	genes,	
	•	the environment,	
	•	both genes and environment together.	
	Exp	olain your answer.	
	cau	se of variation	
	ехр	lanation	
			[2]

6 (a) Solutions of substances in water are acidic, neutral or alkaline.

Table 6.1

								The same	
		•	12					MM. P.O.	1
Solutions of substances in wate	r are	acidi	c, nei	utral o	r alka	ıline.			aC3
Choose pH values from the list I	oelow	to c	omple	ete Ta	ıble 6	.1.			
list of pH values	2	5	7	9	13				
	Та	ble (6.1						
liquid		de	scrip	tion			рН		
sodium chloride solution			neutra	al					
lemonade (a fizzy drink)		wea	akly a	cidic					

[2]

(b) A student used the apparatus shown in Fig. 6.1 to investigate the reaction between dilute hydrochloric acid and magnesium.

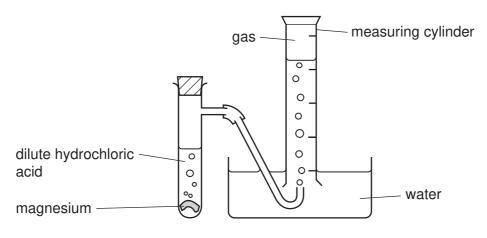


Fig. 6.1

(i) The student made several observations and measurements during her investigation.

Suggest and explain an observation which would show that the reaction between magnesium and dilute hydrochloric acid is exothermic.

	[2]

	State two changes which the student could make to the reaction conditions the gas collected more slowly in the measuring cylinder.
(ii)	State two changes which the student could make to the reaction conditions the gas collected more slowly in the measuring cylinder.
	1
	2
	[2]
(iii)	Complete the word equation for the reaction between dilute hydrochloric acid and magnesium.
	ochloric acid + magnesium
	[2]
	[-1
c) Ma	gnesium, Mg, is a metallic element.
(i)	Explain the meaning of both words in the term metallic element.
	metallic
	element
	[2]
(ii)	Name one other element which is in the same group of the Periodic Table as magnesium.
	[1]
(iii)	An atom of magnesium has a nucleon (mass) number of 26.
	Calculate the number of neutrons in this magnesium atom.
	Use the Periodic Table on page 24.
	Show your working.
	[41]

7 (a) A racing car is being driven in a race.

The graph in Fig. 7.1 shows the speed of the car over a 26 second period.

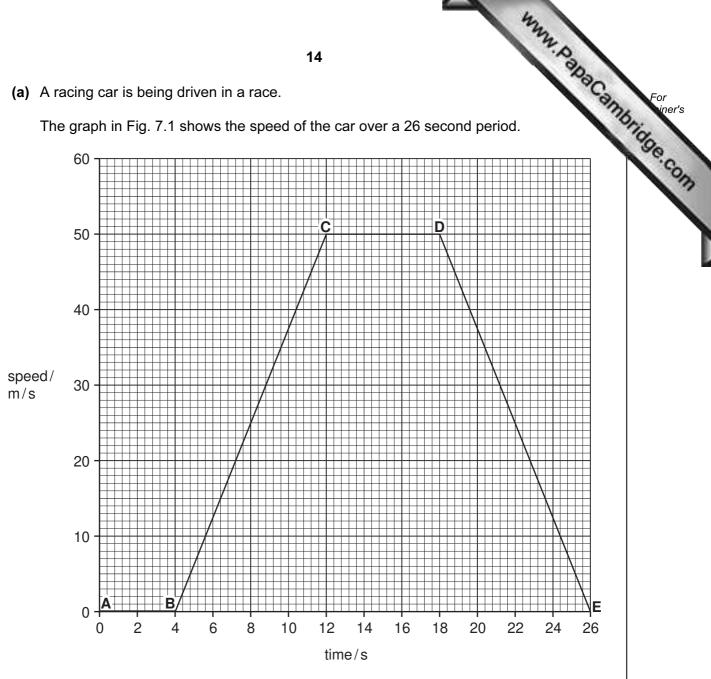


Fig. 7.1

(1)	Between which points on the graph is the car not moving?	[4]
(ii)	State the speed of the car between C and D .	ניו
	m/s	[1]

	The state of the s		
	15		For miner's e
iii)	The mass of the car and driver is 600 kg.	TOCOL.	For miner's
	Calculate the momentum of the car between C and D .	1	Aid.
	State the formula that you use and show your working.		36.CO
	formula		133
	working		
	kg m/s	[2]	
iv)	Calculate the acceleration of the car between B and C .		
	Show your working.		
	m/s^2	[2]	
	•	L-J	I

www.Papa Cambridge.com (b) A wheel on a car needs changing. Fig. 7.2 shows a spanner of length 0.3 m bein to turn a wheel nut.

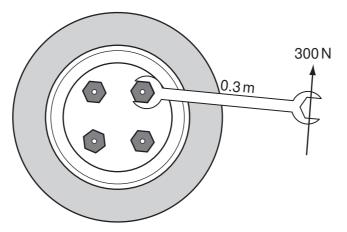


Fig. 7.2

(i)	Calculate the turning effect (momen	t) of the spanner.
-----	-------------------------------------	--------------------

State the formula that you use and show your working.

formula

working

			Nm	[2]
	(ii)	Give two ways in which you can increase the spanner's turning effe	ct.	
		1		
		2		[2]
(c)	A ca	ar has been painted blue. Blue is a primary colour of light.		
	Nar	ne the two other primary colours of light.		
		and		[1]

17

BLANK PAGE

Please turn over for Question 8.

NAM. Papa Cambridge.com

8 Sprinters need fast reflexes to make a good start in a 100 m race. They respond sound of the starting gun by pushing off from their starting blocks as fast as they can.

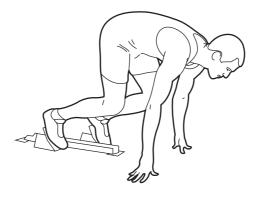


Fig. 8.1

(a) Choose the correct word from the list to identify the stimulus, receptor and effector in this response.

ear	eye	muscle	sprinter	sound	
stimulus					
receptor					
effector					[3]

(b) The time between the starting gun being fired and the runner pushing off from the starting blocks is known as the reaction time.

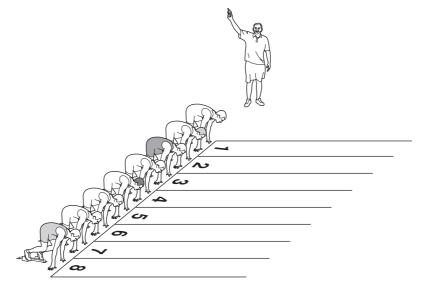


Fig. 8.2

The reaction time is made up of:

- the time taken for the sound from the starting gun to reach the runner's ear,
- plus the time taken for a nerve impulse to pass from the ear to the brain,
- plus the time taken for a nerve impulse to pass from the brain to the leg muscles.

www.PatraCambridge.com (i) A runner in lane 1 is 2 m from the starting gun. Sound travels at 330 m/s. Calculate the time taken for the sound to reach the runner's ear. Show your working.

 s	[2]

Table 8.1 shows the reaction times of the runners in lane 1 and lane 8 in the heats (qualifying races) for a 100 m race.

Table 8.1

				reaction	time/s			
	heat 1	heat 2	heat 3	heat 4	heat 5	heat 6	heat 7	heat 8
lane 1	0.133	0.146	0.170	0.160	0.186	0.176	0.149	0.147
lane 8	0.228	0.223	0.188	0.195	0.178	0.199	0.163	0.167

(ii) Draw a ring around the heat that shows anomalous results.

lane

- [1]
- (iii) In which lane did the runners have the longer reaction times? Suggest a reason for this.

idile	
reason	
	[1]

		the state of the s
		ring a sprint race, a runner's muscle cells use anaerobic respiration. Explain what is meant by anaerobic respiration.
(c)	Dur	ring a sprint race, a runner's muscle cells use anaerobic respiration.
	(i)	Explain what is meant by anaerobic respiration.
		ros
		[2]
	(ii)	Name the waste substance that is made when anaerobic respiration takes place in human cells.
		[1]
	(iii)	Describe how the body gets rid of this waste substance after the race is over.
		[2]

9 Fig. 9.1 shows part of the water cycle.

www.Papa Cambridge.com P shows where liquid water is evaporating into water vapour which rises and the condenses back into drops of liquid water in clouds.

Q shows where rain is falling. The rainwater collects in streams and rivers which flow over rocks in the Earth's crust.

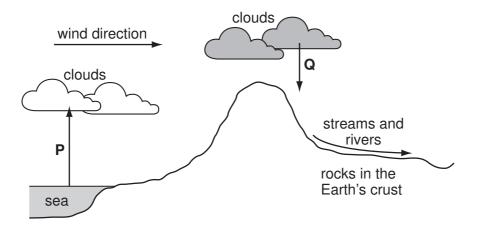


Fig. 9.1

(a)	State briefly what happens to the rising water vapour, ${\bf P}$, in Fig. 9.1 which causes it to condense.
	[1]
(b)	Water molecules contain the elements hydrogen and oxygen.
	A student thinks that the oxygen in water should relight a glowing wooden splint.
	Explain why a glowing wooden splint does not relight when placed into a test-tube full of water vapour.
	101

		the state of the s	
		22	
(c)		rocks in the Earth's crust undergo weathering and erosion which are imperiod for rocks in the formation of clay.	
	(i)	State what must be done to objects made of clay to change them into rigid ceramic objects such as dinner plates.	•
		[1]	
	(ii)	Carbon is a non-metallic element.	ļ
		Explain why rainwater which contains dissolved carbon dioxide causes chemical weathering of limestone rocks.	J
		[3]	

(d) Fig. 9.2 shows a simplified diagram of a machine used to wash dishes.

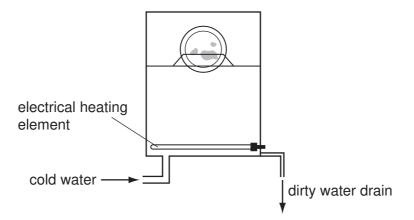


Fig. 9.2

In this machine the water, which is to be used to clean the dishes is first heated to a high temperature and then a detergent is added.

(1)	machine.	เกเร
		[1]
(ii)	Name a metallic element whose compounds cause hardness in water.	
		[1]
(iii)	Explain briefly the advantage of adding a detergent to the water in the machine.	
		[1]

For miner's e University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of

DATA SHEET The Periodic Table of the Flements

							THE PE	iodic ia	able of tr	ie Eleili	ents						
								Gr	oup								
I	II											III	IV	V	VI	VII	0
							1 H Hydrogen 1										4 He Helium 2
7	9											11	12	14	16	19	20
Li Lithium	Be Beryllium											B Boron	C Carbon 6	Nitrogen 7	Oxygen 8	Fluorine 9	Ne Neon
23 Na Sodium	24 Mg Magnesium 12											27 A 1 Aluminium 13	28 Si Silicon	31 P Phosphorus 15	32 S Sulfur	35.5 C1 Chlorine	40 Ar Argon
39 K Potassium 19	40 Ca Calcium 20	45 SC Scandium 21	48 Ti Titanium 22	51 V Vanadium 23	52 Cr Chromium 24	55 Mn Manganese 25	56 Fe Iron	59 Co Cobalt 27	59 Ni Nickel 28	64 Cu Copper 29	65 Zn Zinc	70 Ga Gallium	73 Ge Germanium 32	75 As Arsenic	79 Se Selenium 34	80 Br Bromine 35	84 Kr Krypton 36
85 Rb Rubidium 37	88 Sr Strontium 38	89 Y Yttrium 39	91 Zr Zirconium 40	93 Nb Niobium	96 Mo Molybdenum 42	Tc Technetium 43	101 Ru Ruthenium 44	103 Rh Rhodium 45	106 Pd Palladium 46	108 Ag Silver	112 Cd Cadmium 48	115 In Indium	119 Sn Tin	Sb Antimony	128 Te Tellurium 52	127 I Iodine 53	131 Xe Xenon 54
133 Cs Caesium 55	137 Ba Barium 56	139 La Lanthanum 57 *	178 Hf Hafnium 72	181 Ta Tantalum 73	184 W Tungsten 74	186 Re Rhenium 75	190 Os Osmium 76	192 Ir Iridium	195 Pt Platinum 78	197 Au Gold 79	201 Hg Mercury 80	204 T <i>l</i> Thallium 81	207 Pb Lead 82	209 Bi Bismuth	Po Polonium 84	At Astatine 85	Rn Radon 86
Fr Francium 87	226 Ra Radium 88	AC Actinium 89 †															

*58-71 Lanthanoid series †90-103 Actinoid series

X

Key

a = relative atomic mass X = atomic symbol

b = proton (atomic) number

140 Ce	141 Pr	144 Nd	Pm	150 Sm	152 Eu	157 Gd	159 Tb	162 Dy	165 Ho	167 Er	169 Tm	173 Yb	175 Lu	
Cerium 58	Praseodymium 59	Neodymium 60	Promethium 61	Samarium 62	Europium 63	Gadolinium 64	Terbium 65	Dysprosium 66	Holmium 67	Erbium 68	Thulium 69	Ytterbium 70	Lutetium 71	
232		238												
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	4.
Thorium 90	Protactinium 91	Uranium 92	Neptunium 93	Plutonium 94	Americium 95	Curium 96	Berkelium 97	Californium 98	Einsteinium 99	Fermium 100	Mendelevium 101	Nobelium	Lawrencium	"V
					1	1	1		1	1	1	1	1	'W
								•	(r.t.p.).				100	-90
									() /				Johnes	adle
												0.365	hidne.	and a second
												no ser	Manie	ede dinant