UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

www.papacambridge.com MARK SCHEME for the May/June 2011 question paper

for the guidance of teachers

0654 CO-ORDINATED SCIENCES

0654/31

Paper 3 (Extended Theory), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	2	Mark Scheme: Teachers' version Syllabus	r
		IGCSE – May/June 2011 0654	20
(a) (i)	ref. to	vater rises/cold water sinks/hot water stays on top of cold water ; o convection ; vater less dense/cold water more dense ;	Da Cambrid
(ii)	5000	J/5kJ ;	[1]
(iii)	mass energ corre	gy = shc × mass × temperature change (or rearranged); s = 280 kg or 280 000 g <i>and</i> temperature change = 30; gy = 36 000 000 J or 2 × 5 × 60 × 60; (allow ecf from (ii)) ct substitution into formula; (allow ecf) J/kg°C; (allow 4290 or 4300) (allow ecf)	[max 4]
(str	ong er	rent produces) stronger electromagnet ; nough to) attract iron (on pivot) ;	
con	ntacts k	oreak ;	[3]
			[Total: 10]
(a) chlo glas	orine ; ss ;		[2]
(b) (i)	any t	<i>wo of:</i> copper, sodium chloride, glass ;	[1]
(ii)	argor	n <u>and</u> glass ;	[1]
(iii)		ctions <u>between</u> molecules, are weak/require little energy to break ; s <u>within</u> molecules, are strong/require much energy to break ;	
		gy from) heating sufficient to separate molecules ; gy from) heating insufficient to break chemical bonds ;	
		oration requires (only) weak forces between molecules to be overcome ; arance of, hydrogen/carbon, requires chemical bonds to be broken ;	[max 3]
(c) (i)	reacti	ion is reversible; (not 'the equation is reversible' or 'it is reversible')	[1]
(ii)	increa	ases reaction rate ; ases surface area (of catalyst) ; er collision frequency/less catalyst required/improves catalyst efficiency.	/ [3]
(iii)	nitrog	gen is, unreactive/stable/inert ; gen, is strongly bonded/has triple bond ; n energy needed to break molecule/start reaction ;	
		igh temperature to kinetic energy of molecules ; pressure/high temperature, to high collision frequency ;	[max 3]

Page 3 Mark Scheme: Teach	hers' version Syllabus
IGCSE – May/Ju	une 2011 0654 %
 (a) label to cell membrane ; label to cytoplasm ; label to nucleus ; 	hers' version Syllabus une 2011 0654 Proceedings [n. 1]
(b) testis ;	[1]
(c) (i) single sperm quantities would be t	too small to measure ; [1]
(ii) respiration ; oxygen combined with sugar to rel	elease energy; [2]
 (iii) (formula) (power =) work ÷ time o (substitution) 164/60 × 60 ; (answer + unit) 0.046/0.05, W or 	
(iv) pointed (head)/small head/strear reduces, friction/drag/resistance idea that less (forward-acting) force	mlined ; of the water ;
(d) fertilisation ; <u>nuclei</u> fuse ; form a zygote ;	[max 2]
	[Total: 13]
(a) (i) electrons ;	[1]
(ii) negative ;	[1]
(iii) electrons/charged particles, accur	mulate on screen ; (not protons or ions) [1]
(iv) any two for 1 mark: length, cross sectional area/diameter/thic	ckness/width,
resistivity/conductivity/material, temperature ;	[max 1]
(b) a device that processes, information/e	electrical signals ; [1]
(c) (i) heat/thermal ;	[1]
(ii) increase temperature/air is heated	d/air rises/convection current ; [1]
 (iii) efficiency = useful energy output/e = 33 (%); 	energy input or = 100/300 ; [2]

	age 4		Syllabus Syllabus
		IGCSE – May/June 2011	0654 23
(a)	are	B/not in A or C, because air/oxygen and water are p e needed for rusting ; water in A <u>and</u> no air/oxygen in C ;	Syllabus 0654 present or air and water
(b)	(i)	carbon ;	[
	(ii)	regular structure (of iron) disrupted/atoms are of diffe (iron) atoms do not so easily slip past one another ;	
(c)	(i)	bonds;	
		double bonds are between carbon atoms ;	[;
	(ii)	double bonds become single and monomers link toge to form chains ; (diagram showing at least three symbols linked by s marks)	[2
			[Total: 9
(a)	(i)	reflex (action) ;	[
	(ii)	as electrical impulse ; along, nerves/neurones/nerve cells ; correct ref. to sensory/motor, neurone ; correct ref. to central nervous system/brain ;	[max 3
(b)	incr	nding/crushing ; crease surface area of food ; ea of easier access for enzymes ;	[:
(c)	(i)	catalyst ; protein ; speeds up/controls, (metabolic) reactions ;	[max 2
	(ii)	breaks down/digests, starch ; to, sugar/maltose ; so that it can be absorbed ;	[max 2
	(iii)	pancreas ;	
	(,		[.
	()	duodenum/small intestine ;	[/

Da	~~ 5	5 Mark Scheme: Teachers' version Syllabus	2.0
Pa	ige 5	5 Mark Scheme: Teachers' version Syllabus IGCSE – May/June 2011 0654	20
(a)	(i)	$(\lambda =) v/f \text{ or } v = f \times \lambda;$ 300000000/10000000 = 0.03 m;	M. Papacambids
	(ii)	(distance =) speed × time ; = 300 000 000 × 0.000 027 = 8100 m so distance = 4050 m ;	[2]
(b)		E =) ½ mv ² ; ½ × 140000 × 100 × 100 = 7 × 10 ⁸ J ;	[2]
(c)		(deceleration =) <u>change in velocity</u> /time ; (= 85/40 =) 2.125 m/s ² ;	[2]
	(ii)	suitable axes and scales ; straight line ; from 85 m/s at t = 0 to 0 m/s at t = 40 ;	[3]
			[Total: 11]
(a)		c coloured flame shows potassium (feldspar)/yellow flame shows so ldspar);	dium [1]
(b)	tota 4 –	al charge of positive ions = total charge of negative/total negative needs	to be
		, each carbonate must be 2 – ;	[2]
(c)	(i)	$(M_r \text{ dolomite is}) 40 + 24 + (12 + 16 \times 3) / 184 ;$	
		moles = mass \div M _r /moles = 1.84 \div 184 ; (allow ecf) = 0.01 ;	[3]
	(ii)	0.02 ; (allow ecf from (i))	[1]
(d)	(i)	calcium chloride <u>and</u> magnesium chloride ;	[1]
	(ii)	MgO + 2HC $l \longrightarrow MgCl_2 + H_2O$;;; (one mark for each correct <i>product</i> formula and one mark for balancing)	[3]
			[Total: 11]

Page 6		Mark Scheme: Teachers' version	Syllabus 🔪	2
		IGCSE – May/June 2011	0654	Da
(a) (i)	ioint	ed legs ;		Aanacambru ae ;
a) (i)	joint			10,
(ii)	six le	egs/body in three parts/head, thorax and abdomen	one pair of antenn	ae ;
(b) ref.	. to dig	gestion/absorption (in dung beetle) ;		
		spiration (in dung beetle or in decomposers);		
		lioxide, into air/breathed out ;		
		lioxide absorbed by plant ; lioxide used in <u>photosynthesis</u> (in plant) ;		[max 3]
				۲
(c) (i)	nitra	tes absorbed by plant roots ;		
		for making proteins ;		r 0.
	prote	eins used for making new, cells/tissues ;		[max 2]
(ii)	fewe	er, nitrates/fertilisers, to leach into waterways ;		
		eutrophication ;		
		growth of algae ; er bacteria in waterways ;		
		e oxygen in the water ;		
	SO 0	rganisms that need oxygen/fish, can survive ;		
	less	artificial fertiliser manufactured so less energy used	;	[max 3]
				[Total: 10]
				-