

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

ONS AND THE STATE OF THE STATE

*	
•	
∞	
~	
N	
_	
0	
W	
7	
2	
6	
7	
0	
J	

CANDIDATE NAME									
CENTRE NUMBER						CANDIDA NUMBER			

CO-ORDINATED SCIENCES

0654/32

Paper 3 (Extended)

May/June 2011

2 hours

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 28.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use					
1					
2					
3					
4					
5					
6					
7					
8					
9					
10					
Total					

This document consists of 26 printed pages and 2 blank pages.

Guanacos are relatives of camels and live in the Andes mountains in South America 1 feed on grasses and other plants. They are hunted by pumas, and young guanacos may killed by foxes.

Fig. 1.1 shows a guanaco.

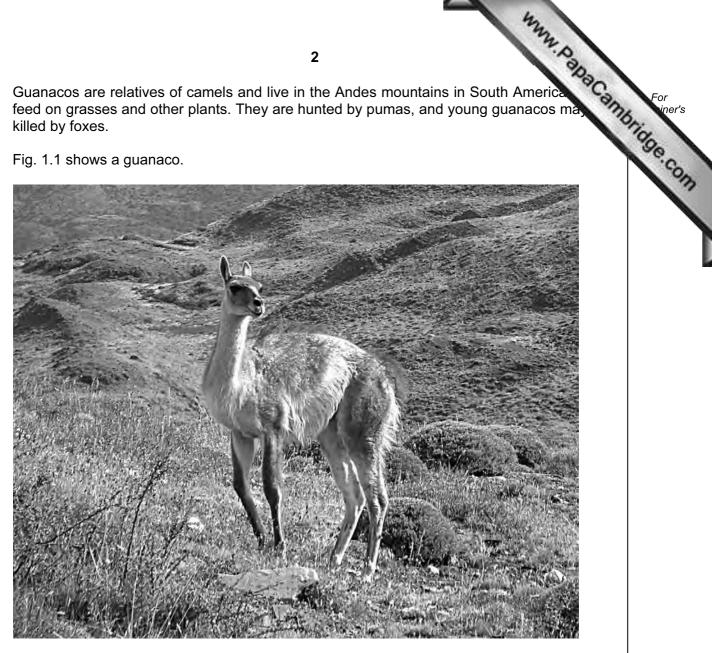


Fig. 1.1

(a) (i) State one feature, visible on Fig. 1.1, that indicates that guanacos are mamma					als.			
								<u></u> [1]
(ii)	State one for killed by pure	eature, visible nas.	on Fig. 1	.1, that co	ould help	guanacos to	avoid	being
								[1]

(b) Guanacos can live at very high altitudes, above 4000 metres, where the atmosp less dense than at sea level.

www.papaCambridge.com The blood of a guanaco contains four times as many red blood cells per cm³ as the blood of a human.

This adapts the guanaco to its environment. Suggest an explanation for this.

(c) Guanacos are an endangered species. Their numbers have fallen because of loss of suitable habitat and because of hunting by humans. Several countries in South America have conservation programmes to try to increase the numbers of guanacos.

In one conservation programme, five male and five female guanacos were introduced into a suitable habitat of about 25 km². They were protected from humans.

Fig. 1.2 shows what happened to the guanaco population over the next few years.

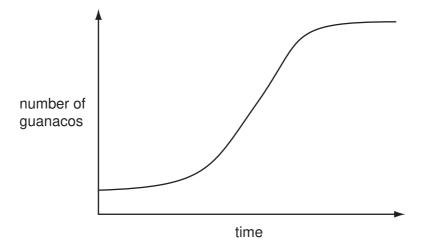


Fig. 1.2

Explain the reasons for the shape of the graph.	
	[3]

	MAN	
	4	
(d)	People in South America domesticated guanacos at least 6000 years ago. The artificial selection to produce a breed of guanacos that produced more meat, milk wool and that were easy to keep as herds. These animals are now called llamas.	For iner's
	Explain how artificial selection could have produced llamas from guanacos.	Se. COM
	[4]	

2 Lithium and its compounds have many important uses.

The production of lithium metal involves three main stages.

- www.PattaCambridge.com Lithium compounds found in the Earth's crust are converted into lithium carbonate, 1 Li_2CO_3 .
- 2 Lithium carbonate is converted into lithium chloride, LiC1.
- 3 Lithium chloride is melted and is electrolysed.

(a)	Exp	olain why lithium is neve	er found as the uncombined element in the Earth's crust.
	•••••		[1]
(b)	The	electron configuration	s of lithium ions and chloride ions are shown below.
		lithium ion chloride ion	2 2,8,8
	(i)		protons and electrons, why a lithium ion has a single positive a lithium atom is uncharged (neutral).
			[2]
	(ii)		nloride is a solid with a high melting point.
			[2]
(c)	Sug lithi	ggest a word equation um chloride.	n for a reaction in which lithium carbonate is converted into
			[2]

(d) Fig. 2.1 shows the industrial electrolysis of molten lithium chloride.

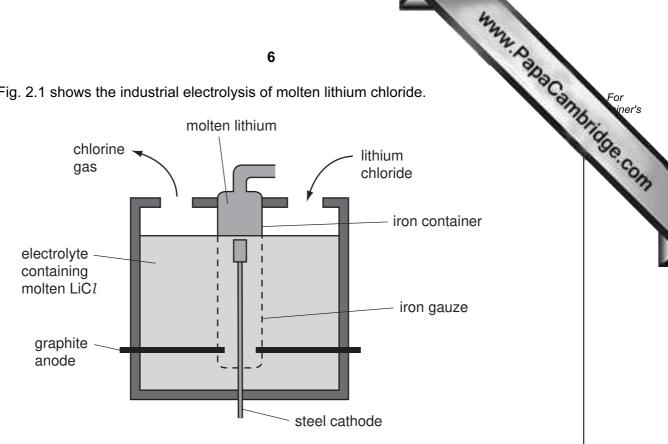


Fig. 2.1

	(i)	Explain why the electrolyte must be kept molten.	
			[1]
	(ii)	Describe how the electron configuration of each lithium ion changes when the arrive at the cathode during the electrolysis in Fig. 2.1.	еу
			[1]
(e)	Lith	ium carbonate is widely used as a drug to treat some types of mental illness.	
	It is	s very important that compounds for use as drugs are made to high standards ity.	of
	Sta	te one reason for this.	
			[1]

(a) Fig. 3.1 shows a skier being pulled up a mountain slope by a cable (lift). 3

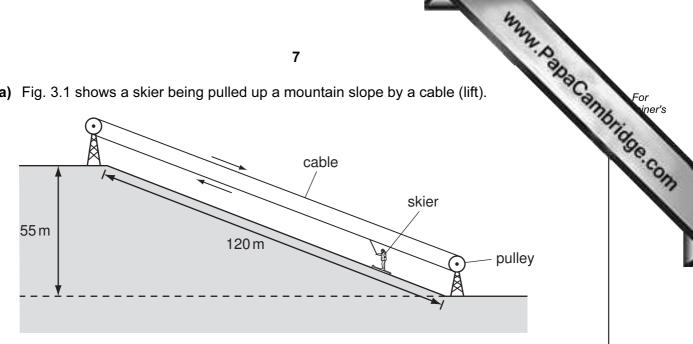


Fig. 3.1

The skier weighs 700 N. She travels 120 m along the slope and rises by a vertical height of 55 m.

Calculate the work done lifting the skier from the bottom to the top of the slope.

You should ignore the work done against friction.

State the formula that you use and show your working.

formula used

working

[2]

www.PapaCambridge.com (b) Skiers use a ski pole in each hand to help control their motion. The ski poles wo when they only go into the snow for a few centimetres.

Fig. 3.2 shows a skier using ski poles.

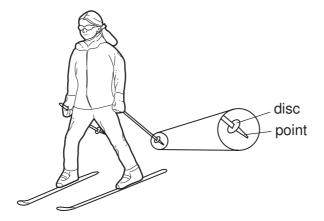
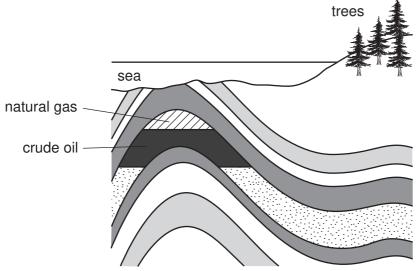



Fig. 3.2

		 [1]
(c)	Explain why a skier keeps the lower surface of her skis smooth and well polished.	
		[2]
	Explain, in terms of pressure, force and area, why the ski pole has a pointed end and large disc a few centimetres above this.	d a

Fig. 4.1 shows underground layers of sedimentary rocks. The diagram is not discale. Some of these rock layers are permeable and contain fossil fuels trapped in them.

www.papaCambridge.com

layers of sedimentary rocks

Fig. 4.1

(a) (i) Wood obtained from trees and compounds obtained from crude oil and natural gas can both be used as fuels.

State two reasons why crude oil and natural gas are examples of fossil fuels but wood is not.

1	
2	
2	
	[2]

(ii) Fossil fuels contain mainly hydrocarbons. Wood contains cellulose which is a carbohydrate.

Name an element which is combined in carbohydrate molecules but not in hydrocarbons.

[1
 L	

]

www.Papa Cambridge.com (b) The molecular formulae of three hydrocarbon molecules are shown below.

 C_6H_{14} $C_{12}H_{26}$ CH₄

(i) Draw the graphical (displayed) formula of C_6H_{14} .

[1]

(ii) All of the molecules shown above are members of the homologous series of alkanes.

State one similarity and one difference in the properties of the pure substances which contain these molecules.

similarity	
difference	
	[2]

(c) In a car engine, the combustion of hydrocarbons produces a mixture of very hot waste (exhaust) gases.

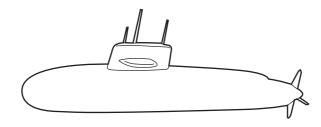
These gases are released from the car into the atmosphere, and some of them cause pollution because they are poisonous.

Table 4.1 shows information about some of the gases in a car's exhaust.

% by volume
67
12
0.05
11
9
0.2

(i)	Suggest why the exhaust gas mixture contains a significant amount of nitrogen.
	[2]
(ii)	In all modern cars, the hot exhaust gases pass through a catalytic converter before they are released into the atmosphere.
	Carbon monoxide and hydrocarbons are oxidised by oxygen as the exhaust gases pass through the catalytic converter.
	State the purpose of the catalyst which is present inside the converter.
	[1]
(iii)	Catalytic converters help to reduce the air pollution caused by car exhaust gases.
	Use the information given in Table 4.1 and your answer to (ii) to explain how they do this.
	[3]

5 (a) Nuclear reactors in power stations produce energy through nuclear fission.


When uranium-235 is used in a reactor, the fission is started by a neutron hitting uranium-235 atom. This results in two other atoms being produced and two neutrons released.

$$^{235}_{92}$$
 U + $^{1}_{0}$ n \longrightarrow $^{144}_{56}$ Ba + $^{90}_{36}$ Z + $^{2}_{0}$ n neutron 2 neutrons

Use the Periodic Table on page 28 to identify atom **Z**.

atom Z is	[1]
a.c = .c	 L.

(b) A nuclear reactor can also be used to power a submarine.

Radiation is released during nuclear fission. The reactor has to be shielded to protect the crew from this radiation.

(i) Suggest **one** material which could shield a nuclear reactor to stop radiation escaping.

	1]
--	---	---

(ii) Describe how being exposed to ionising radiation can affect the human body.

(c) A nuclear reactor produces nuclear waste.

www.PatraCambridge.com Waste from a nuclear reactor contains a radioactive isotope with a half-life 100 years.

A sample of the waste gives a count rate of 3200 counts per minute.

(i)	Explain the meaning of the term isotope.	
		[2]
(ii)	Calculate the time taken for the count rate of this sample of waste to drop 400 counts per minute.	to
	Show your working.	
		[2

	Fig. 6.1	
(a)	Name the structure A .	
	A	[1]
(b)	Explain how the structures shown in Fig. 6.1 can cause the arm to straighten.	
		•••
		[3]
(c)	Muscles B and C are antagonistic muscles.	
	Explain why a pair of antagonistic muscles, rather than a single muscle, is required to move the arm at the elbow joint.	to
		[2]
	l	[ک

WMM. Papa Cambridge Com (d) Bone is made up of the mineral calcium phosphate, and a protein called colla many people, the mineral content of bone increases up to about the age of 20, which it remains approximately constant until about the age of 50.

A study was carried out in Brazil into the mineral content of the leg bones of school children between the ages of 10 and 19 years. The mineral content was measured as the mass of mineral per cm³ of bone. Some of the results are shown in Fig. 6.2.

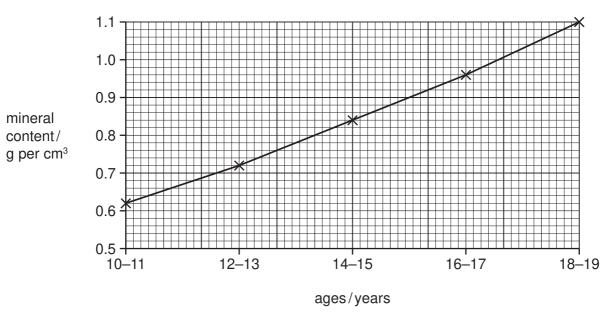
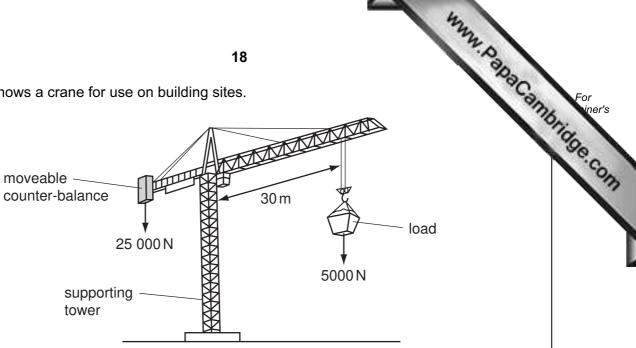


Fig. 6.2

(i)	Describe how the mineral content of bone changes between the ages of 10 and 19 years.
	[2]
(ii)	From the age of about 50 years onwards, the mineral content of bone gradually decreases. If the mineral content of a person's bones becomes very low, a condition called osteoporosis occurs, in which the bones lose their strength and break very easily.
	Use this information, and the data in Fig. 6.2, to suggest why it is important for a teenager to have a diet containing plenty of dairy products such as milk and cheese.
	[2]

(e)	The	human skeleton also contains cartilage.
	(i)	State one difference between the properties of bone and cartilage.
		[1]
	(ii)	State precisely where cartilage is found in the human arm shown in Fig. 6.1, and describe its function.
		[2]


For iner's

BLANK PAGE

Please turn over for Question 7.

www.papaCambridge.com

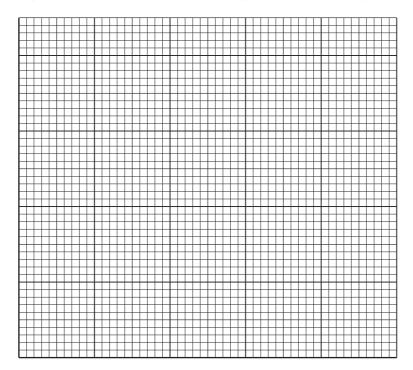
Fig. 7.1 shows a crane for use on building sites.

	Fig. 7.1	
(a)	Explain in terms of forces why the crane needs a counter-balance.	
	[2]
(b)	The crane in Fig. 7.1 is balanced.	
	Calculate the moment of the load about the crane's supporting tower. Then calculate the distance of the counterbalance from the crane's supporting tower.)
	State the formula that you use for your calculations and show your working.	
	formula used	
	working	
	moment of load	
	distance of counterbalance [3]

2	
ne air resi	
For	

- (c) A brick falls from the crane and hits the ground at a speed of 40 m/s. The air reson the brick can be ignored.
 - (i) The acceleration due to gravity is $10 \, \text{m/s}^2$.

Calculate the time of the fall.


State the formula that you use and show your working.

formula used

working

[2]

(ii) On the grid below, draw the speed-time graph for the falling brick.

		2000
(iii)	The brick has a mass of 2 kg. Calculate the kinetic energy of the brick as it hits the ground	Cal
	Calculate the kinetic energy of the brick as it hits the ground.	1
	State the formula that you use and show your working.	
	formula used	
	working	
		[2]
(iv)	State the value of the potential energy of the brick, before it fell from the crane.	
	Explain your answer.	
	potential energy	
	explanation	
		[2]

			The state of the s	
		21	owing functions.	
(a)	Name the part of a flower th	at carries out each of the follo	owing functions.	20
	(i) attracts insects to the fl	ower	N	76
	(ii) makes pollen		[1]
(b)	Complete the table to descr and wind-pollinated flowers.		the stigmas of insect-pollinated	
	feature	insect-pollinated flower	wind-pollinated flower	
	shape of stigma			
	position of stigma			
	The cells in the petals of		stigma of a flower, ending with	
	photosynthesise.			
	Suggest how the cells in flow	wers obtain sugars and other	nutrients.	
				.
			[2	. :1

9 A student investigated the relative reactivity of four metals A, B, C and D, by compared rate at which these metals reacted in dilute acid.

www.papaCambridge.com The pieces of metal had the same surface area, and dilute hydrochloric acid was the only acid used in the experiment.

Fig. 9.1 shows what the student observed during the experiment.

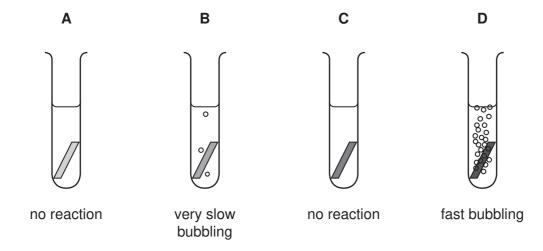


Fig. 9.1

(a) (i) State and explain one of the variables, other than the surface area of the pieces of

metal and the acid used, that the student must keep the same if her assessment of relative reactivity is to be reliable. variable _____ explanation (ii) Predict and explain what is observed if a lighted splint is held over the test-tube in which metal **D** is reacting.

(b) The student took some larger pieces of the same metals, A, B, C and D, and them to make the two electrochemical cells shown in Fig. 9.2.

www.papaCambridge.com The student set up the cells so that the negative electrode in both cells was on the left hand side as shown in Fig. 9.2.

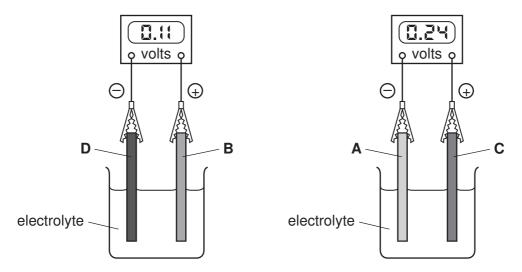


Fig. 9.2

The student had an idea that the electrode made of the more reactive metal would always be the **negative** electrode in an electrochemical cell.

(i)	Use the information in Fig. 9.1 and Fig. 9.2 to explain how the experimental evidence supports the student's idea.
	[2]
(ii)	Use the information in Fig. 9.1 and Fig. 9.2 to suggest which of the four metals, A , B , C or D , is the least reactive.
	metal
	reason
	[2]

	my								
	24								
(c)	Draw a labelled diagram of the bonding in a typical metal. Your diagram does no to show more than 12 atoms.	For iner's							
	Use your diagram to help you to explain why metals are good conductors of electricity.	Tage com							
	[2	21							

- 10 (a) Optical fibres are used to see inside the human body. Light is sent along some fibres to enable doctors to see what is there.
- (i) Fig. 10.1 shows an optical fibre with a ray of light travelling down part of it.

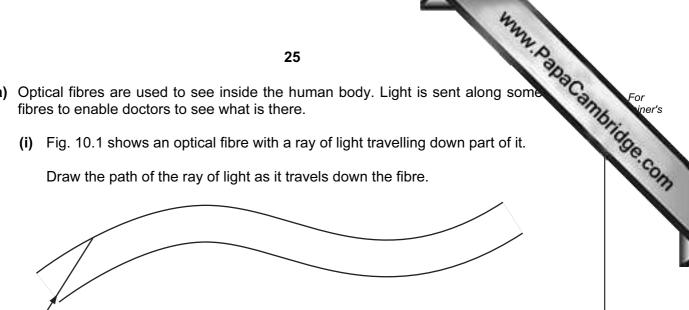


Fig. 10.1

[2]

(ii) Suggest why optical fibres are now replacing metal wires as the method by which telephone signals are sent.

(b) Table 10.1 shows the likely effects of an electric current passing through the book

Table 10.1

1	•	26 f an electric current passing through t ble 10.1 effect on the human body
	current / amperes	effect on the human body
	0.001	none
	0.003	tingling
	0.010	muscular spasm
	0.100	fatal if it passes through the heart

A person touched a live wire connected to a 250 V supply. The path to earth through the body had a high resistance of $20\,000\,\Omega$.

Calculate the current that passes through the person.

What effect will this have on the person's body?

State the formula that you use and show your working.

formula used

working

	current =	
effect on the body		[3]

BLANK PAGE

www.PapaCambridge.com

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of

DATA SHEET The Periodic Table of the Elements

Group																	
1	П											III	IV	V	VI	VII	0
1 H Hydrogen 1												4 He Helium 2					
7	9											11	12	14	16	19	20
Li	Be											В	С	N	0	F	Ne
Lithium	Beryllium 4											Boron 5	Carbon 6	Nitrogen 7	Oxygen 8	Fluorine 9	Neon 10
23	24											27	28	31	32	35.5	40
Na	Mg											Αl	Si	P	S	CI	Ar
Sodium	Magnesium 12											Aluminium 13	Silicon 14	Phosphorus 15	Sulfur 16	Chlorine 17	Argon 18
39	40	45	48	51	52	55	56	59	59	64	65	70	73	75	79	80	84
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Potassium 9	Calcium 20	Scandium 21	Titanium 22	Vanadium 23	Chromium 24	Manganese 25	Iron 26	Cobalt 27	Nickel 28	Copper 29	Zinc 30	Gallium 31	Germanium 32	Arsenic 33	Selenium 34	Bromine 35	Krypton 36
85	88	89	91	93	96		101	103	106	108	112	115	119	122	128	127	131
Rb	Sr	Υ	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
Rubidium 7	Strontium 38	Yttrium 39	Zirconium 40	Niobium 41	Molybdenum 42	Technetium 43	Ruthenium 44	Rhodium 45	Palladium 46	Silver 47	Cadmium 48	Indium 49	Tin 50	Antimony 51	Tellurium 52	lodine 53	Xenon 54
133	137	139	178	181	184	186	190	192	195	197	201	204	207	209			
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	T1	Pb	Bi	Ро	At	Rn
Caesium 5	Barium 56	Lanthanum	Hafnium 72	Tantalum 73	Tungsten 74	Rhenium 75	Osmium 76	Iridium	Platinum 78	Gold 79	Mercury 80	Thallium 81	Lead 82	Bismuth 83	Polonium 84	Astatine	Radon 86
,		57 *	12	13	74	13	10	11	10	19	00	οI	02	03	04	85	00
Fr	226 Ra	227 AC															

*58-71 Lanthanoid series †90-103 Actinoid series

88

Radium

Key

Francium

X

a = relative atomic mass X = atomic symbol

Actinium

b = proton (atomic) number

140 Ce Cerium	141 Pr Praseodymium 59	144 Nd Neodymium 60	Pm Promethium 61	150 Sm Samarium 62	152 Eu Europium 63	157 Gd Gadolinium 64	159 Tb Terbium	162 Dy Dysprosium 66	165 Ho Holmium	167 Er Erbium	169 Tm Thulium	173 Yb Ytterbium	175 Lu Lutetium
232 Th Thorium 90	Pa Protactinium 91	238 U Uranium 92	Np Neptunium 93	Pu Plutonium 94	Am Americium 95	Cm Curium 96	Bk Berkelium 97	Cf Californium 98	Es Einsteinium 99	Fm Fermium 100	Md Mendelevium 101	No Nobelium 102	Lr Lawrencium 103

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).