

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

Chemistry practical notes for this paper are printed on page 16.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use		
1		
2		
3		
Total		

This document consists of **12** printed pages and **4** blank pages.

1 You are going to test the effect of light on the chemical composition of leaves. provided with two leaves from two separate plants of the same species.

www.papaCambridge.com Leaf A has been removed from a plant that has been in strong light for a period of 24 hours.

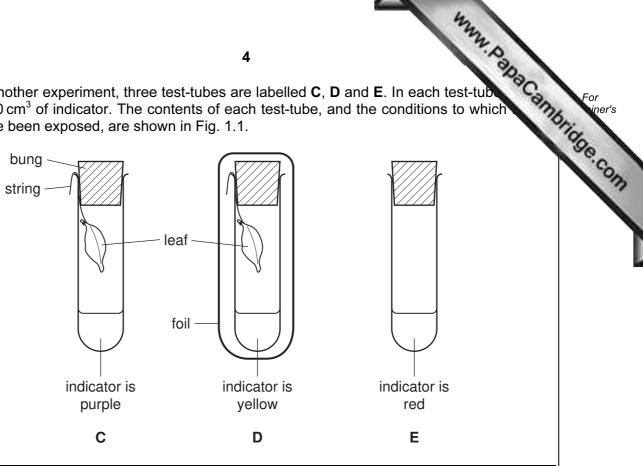
Leaf **B** has been removed from a plant that has been kept in the dark for 48 hours.

- Half fill a 250 cm³ beaker with water. Heat the water with a Bunsen burner until it is boilina.
- Turn off the Bunsen burner.
- Pick up leaf A with a pair of tweezers (forceps) and hold it in the hot water for 15 seconds.
- Using the tweezers place the leaf into the bottom of the large test-tube labelled A.
- Repeat the above procedure for leaf **B**, but place the leaf into the bottom of the large test-tube labelled **B**.
- Cover the leaves with alcohol and place the tubes A and B, into the beaker of hot water (water bath) for 5 minutes. The Bunsen burner must not be lit.
- Carefully remove both tubes from the water bath and pour off the alcohol into the waste beaker.
- (a) (i) Describe the colour of the alcohol that you have poured off from the tubes. Suggest what substance from the leaf has dissolved in the alcohol to produce the colour you have described.

colour substance [2]

- Remove the leaves from the tubes with tweezers and hold them in the water (ii) • bath for 2 to 3 seconds.
 - Place the leaves into the separate petri dishes (or onto the white tiles) labelled A and B. Use the tweezers to lay them flat and cover both leaves with iodine solution. Leave for about 2 minutes.
 - Wash off the excess iodine solution with cold water. Pour any excess liquid into the waste beaker.
 - Observe and record the colour of the leaves in Table 1.1.
 - The colour of each leaf suggests a substance that may be present or absent in it. Use your observation to make a conclusion about each leaf. Record your conclusion in Table 1.1.

	3 Table 1.1	ANNA DO	Bacanne For iner's
colour of leaf after	leaf A	leaf B	Singhigge Con
2 minutes conclusion			


[3]

(b) (i) Explain why leaves A and B were placed in boiling water before being placed in alcohol.

......[1]

(ii) Explain how light has caused the difference in colour, shown by the iodine test, between leaves A and B.

.....[3] (c) In another experiment, three test-tubes are labelled C, D and E. In each test-tube is 10 cm^3 of indicator. The contents of each test-tube, and the conditions to which have been exposed, are shown in Fig. 1.1.

test-tube	С	D	E
indicator	10 cm ³	10 cm ³	10 cm ³
leaf	1 present	1 present	no leaf
light	full light for 24 hrs	covered in foil for 24 hrs	full light for 24 hrs
indicator colour	purple	yellow	red

Fig. 1.1

	42
	5
	5 e indicator solution shows the changes in the levels of carbon dioxide gas nosphere surrounding it. At normal atmospheric concentrations of carbon dioxide gas, the indicator solution is red. If atmospheric carbon dioxide concentrations falls, the indicator turns purple.
•	At normal atmospheric concentrations of carbon dioxide gas, the indicator solution is red.
•	If atmospheric carbon dioxide concentrations falls, the indicator turns purple.
•	If atmospheric carbon dioxide concentration rises, the indicator turns yellow.
(i)	Suggest a reason for the bung in the top of each test-tube.
	[1]
(ii)	Suggest a reason for carrying out the experiment in test-tube E .
	[1]
(iii)	Explain the reasons for the colours of the indicator in
	test-tube C ,
	test-tube D .
	[4]

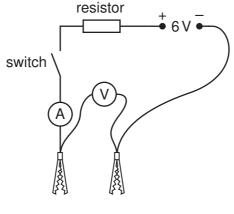


Fig. 2.1

- Construct the circuit shown in Fig. 2.1. You will be connecting the crocodile (i) • clips to the resistance wire.
 - Connect one crocodile clip at the 0 cm point on the rule, with most of the length of the wire pointing along the rule. This will become the point **X** shown on Fig. 2.2.

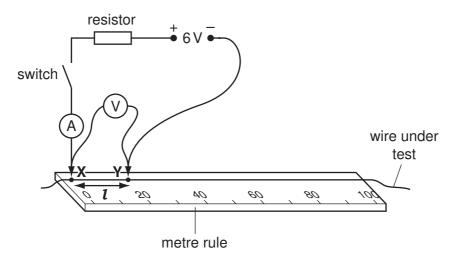


Fig. 2.2

- Complete the circuit by pressing the other crocodile clip firmly on to the . resistance wire at point Y shown in Fig. 2.2. Make sure that the length, I, between point **X** and point **Y** is 20 cm.
- Close the switch and read the current, I, on the ammeter and the potential difference, V, on the voltmeter. Record these readings in Table 2.1. [1]
- Open the switch.

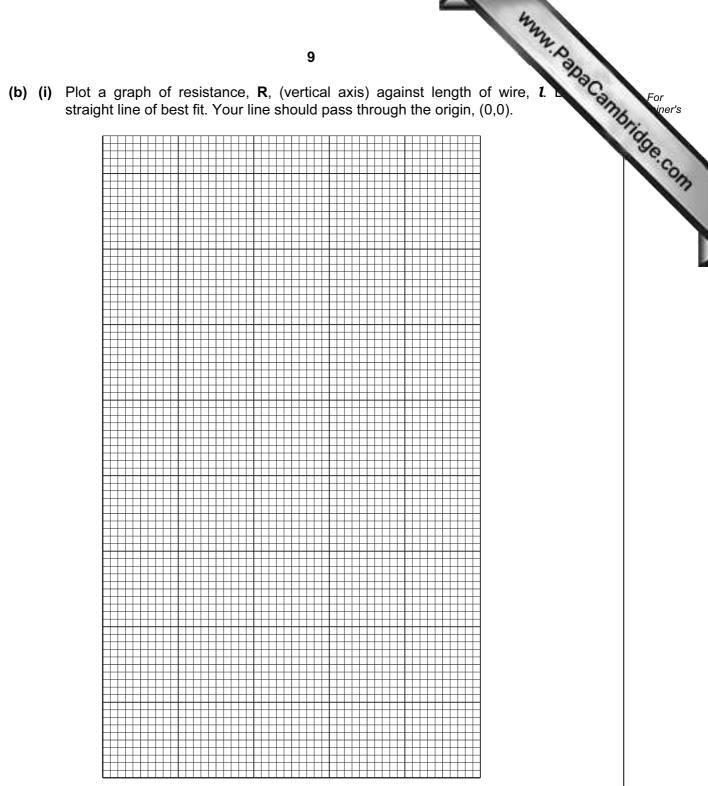
Table 2.1

	8 Table 2.1		resistance, R/ohms	For iner's
length of wire, <i>l</i> /cm	potential difference, <i>V</i> /volts	current, <i>I</i> /amps	resistance, R/ohms	Shade.c
20				OT
40				
60				
80				
100				

(ii) Repeat the procedure described in (i), adjusting point Y so that the length, I, is 40 cm. Close the switch and read the current, I, on the ammeter and the potential difference, *V*, on the voltmeter. Record these readings in Table 2.1. [1]

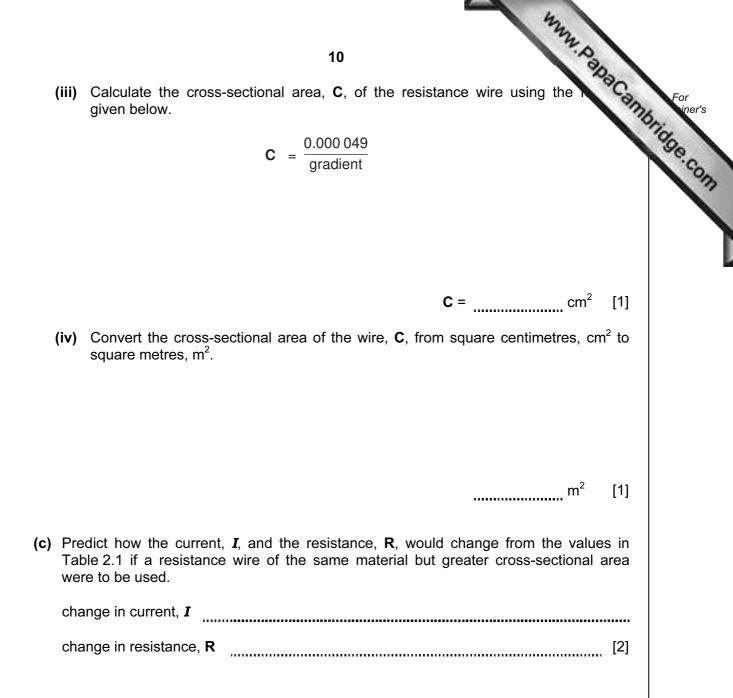
Open the switch.

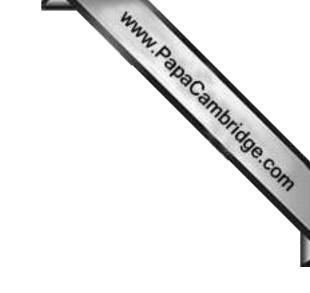
(iii) Repeat (i) for l = 60 cm, 80 cm and 100 cm. For each length, l, record the current, I, and the potential difference, V, in Table 2.1. [2]


Open the switch.

(iv) Calculate the resistance, R, of each length of the resistance wire and enter the values in Table 2.1.

Use the formula below.


resistance,
$$\mathbf{R} = \frac{\mathbf{V}}{\mathbf{I}}$$


[1]

[4]

(ii) Find the gradient of the line and show clearly your working either on the graph or below.

Please turn over for Question 3.

(i)	13 Place about 2 cm³ of the filtrate from (a)(i) into a clean test-tube. Add 5 do aqueous silver nitrate. Record your observations and conclusion. observations
(-)	aqueous silver nitrate.
	Record your observations and conclusion.
	observations
	conclusion
	[2]
i)	Place about 2 cm ³ of the filtrate from (a)(i) into a clean test-tube. Add about 1 cm ³ of aqueous barium chloride.
	Record your observations and conclusion.
	observations
	conclusion
	[2]
iii)	Place about 2 cm^3 of the filtrate from (a)(i) into a clean hard glass test-tube. Add about 3 cm^3 aqueous sodium hydroxide. Carefully warm the test-tube and test any gases with damp red litmus paper.
	Record your observations and conclusions and suggest a possible identity of the cation in the filtrate from (a)(i) .
	observations
	conclusion from litmus test
	possible identity of the cation from (a)(i)
	[4]

CHEMISTRY PRACTICAL NOTES

Test for anions

Test for anions	16 CHEMISTRY PRACTICAL NO	TES hhvvv. babacambridge test result
anion	test	test result
carbonate (CO ₃ ²⁻)	add dilute acid	effervescence, carbon dioxide produced
chloride (Cl ⁻) [in solution]	acidify with dilute nitric acid, then add aqueous silver nitrate	white ppt.
nitrate (NO₃⁻) [in solution]	add aqueous sodium hydroxide then aluminium foil; warm carefully	ammonia produced
sulfate (SO ₄ ²⁻) [in solution]	acidify then add aqueous barium chloride <i>or</i> aqueous barium nitrate	white ppt.

Test for aqueous cations

cation	effect of aqueous sodium hydroxide	effect of aqueous ammonia
ammonium (NH_4^+)	ammonia produced on warming	-
copper(II) (Cu ²⁺)	light blue ppt., insoluble in excess	light blue ppt., soluble in excess giving a dark blue solution
iron(II) (Fe ²⁺)	green ppt., insoluble in excess	green ppt., insoluble in excess
iron(III) (Fe ³⁺)	red-brown ppt., insoluble in excess	red-brown ppt., insoluble in excess
zinc (Zn ²⁺)	white ppt., soluble in excess giving a colourless solution	white ppt., soluble in excess giving a colourless solution

Test for gases

gas	test and test results
ammonia (NH ₃)	turns damp red litmus paper blue
carbon dioxide (CO ₂)	turns limewater milky
chlorine (Cl ₂)	bleaches damp litmus paper
hydrogen (H ₂)	"pops" with a lighted splint
oxygen (O ₂)	relights a glowing splint

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.