BIOLOGY

9700/42
Paper 4 A Level Structured Questions
October/November 2017
MARK SCHEME
Maximum Mark: 100

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the October/November 2017 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Mark scheme abbreviations

;	separates marking points I
alternative answers for the same point	
R	reject

Question	Answer	Marks
1(a)(i)	three from: 1 the numbers of, prey / herbivores / sheep / goats, would increase ; 2 decrease in number of plants / idea of overgrazing ; 3 damage to habitat; e.g. erosion 4 increased competition (for plants); 5 lack of food causes, herbivore numbers to decline / herbivores to migrate away; 6 reduction in, biodiversity / species diversity / genetic diversity / genetic variation ; 7 AVP ; e.g. increase in other predators / disruption to food web	3
1(a)(ii)	one from: 1 snow leopards are, hard to see / camouflaged ; 2 vast habitat to cover (to locate snow leopards)/ inaccessible locations / solitary ; 3 AVP ; e.g. difficulty getting permission from some governments to go into certain areas	1

Question	Answer	Marks
1(b)	three from: 1 ban trade (of, leopard / leopard products) ; 2 ban hunting; 3 detection methods ; e.g. customs / trading officers / wildlife forensics / extra rangers 4 enforcement measures ; e.g. fines / prison / punishment 5 raise public awareness / education ; 6 ref. to protected areas / national parks ;	3

Question	Answer	Marks
1(c)	two from: 1 genetic diversity decreases / AW ; 2 increased chance of two harmful recessive alleles coming together / increase in inbreeding depression / decrease in hybrid vigour ; 3 (some) less likely to survive ; 4 (because) less likely to adapt to change in, environmental conditions / selection pressure ;	2
1(d)	two from: 1 appearance / morphology / visible features / looked similar to leopards ; 2 breeding (to produce fertile offspring) ; ora 3 ref. to behaviour ;	2
2(a)(i)	NADP ;	1
2(a)(ii)	two from: 1 photolysis of water / AW ; 2 ref. to photosystem II; 3 using an enzyme ; 4 hydrogen ions and electrons combine to form hydrogen / AW ;	2

Question	Answer	Marks
2(b)(i)	two from: 1 to, reduce / stop, activity of enzymes ; 2 ref. to proteases / lipases; 3 to prevent damage (to chloroplasts);	2
2(b)(ii)	1 to, control $\mathrm{pH} /$ keep pH constant ; 2 so enzyme works at optimum / to prevent denaturation of enzyme ;	2
2(b)(iii)	1 to avoid, osmosis / movement of water down a water potential gradient ; 2 to prevent damage (to chloroplasts)/ AW ;	2
2(c)(i)	43/43.0;	1
2(c)(ii)	$\begin{aligned} & 23.3 / 23.0 / 23 \text {; } \\ & \text { accept ecf from 2(c)(i) } \end{aligned}$	1

Question	Answer	
2(c)(iii)	four from: relationship 1 as light intensity increases time taken for decolourisation decreases or as light intensity increases rate of decolourisation increases or as light intensity increases decolourisation is faster ; explanation (max 3) 2 more, photons / light energy, absorbed ; 3 more / faster, photolysis / AW ; 4 more electrons, excited / released or faster rate of electron release ; 5 more protons released or faster rate of proton release ; 6 more / faster, reduction of DCPIP ;	

| Question | Answer |
| :---: | :--- | :---: |
| 3(a) | two from: |
| | 1 killing by humans / eaten by humans / hunting / poaching ;
 2 loss of, habitat / waste land ;
 3 loss of, (plant) food / grazing ;
 3(b) three from:
 1 DNA / nucleotide, sequencing ;
 3 ref. to mitochondrial DNA ;
 4 idea of comparing sequences (from A and B) ;
 5 AVP ; e.g. sequencing method such as Sanger / dideoxynucleotides / chain termination / automated / next generation
 or ref. to bioinformatics / genome analysis / microarray analysis |

| Question | Answer |
| :---: | :--- | :---: |
| 3(c) | three from: |
| | 1 A (originally) geographically isolated / described, (from ancestors of, B / C / D) ;
 2 for, 12000 years / long period of time / many generations ;
 3 different mutations (in Ireland and Great Britain) ;
 4 different, selection pressures / environmental conditions, (in Ireland and Great Britain) ;
 5 ref. to genetic drift ;
 7 reduction in genetic diversity in A/population bottleneck ;
 7 |

Question	Answer	Marks
4(a)	four from: vasodilation 1 arterioles / blood vessels, (in skin) widen ; R capillaries I arteries 2 more blood flows to capillaries / blood flows through capillaries more slowly ; 3 heat (energy) lost ; sweating 4 more sweat, produced / released; 5 sweat/water, evaporates ; 6 using heat energy / ref. to latent heat of vaporisation ;	4
4(b)	four from: 1 high blood glucose concentration / hyperglycaemia ; 2 (causes) decrease in water potential (of blood) ; 3 detected by, osmoreceptors / hypothalamus ; 4 feelings of thirst ; 5 less / no, glucose converted to, fat / glycogen ; 6 glucose lost in urine / not all glucose reabsorbed / blood glucose concentration above the renal threshold ; 7 glucose not taken up by cells ; 8 (so) fats / proteins, are, respired / metabolised;	4

Question	Answer	Marks
4(c)(i)	three from: 1 (pad contains) glucose oxidase ; 2 enzyme / glucose oxidase, reacts with glucose (in the blood) ; 3 oxygen detected; 4 (electric) current generated; 5 detected by electrode ; 6 gives numerical value (of blood glucose concentration) ;	3
4(c)(ii)	one from: 1 gives the, actual / accurate / exact, reading (of blood glucose concentration) ; 2 re-usable; 3 more precise reading / quantitative ;	1
5(a)(i)	two from: 1 CAG / repeat, is a triplet or triplets of bases / codons, are added ; 2 (so) other triplets are unchanged ; 3 (so) no frameshift ;	2

Question	Answer	Marks
5(a)(ii)	four from: 1 allele is dominant; 2 so will still be expressed even when, normal / recessive, allele is present ; ora 3 (gene therapy only) used to treat recessive (allele) disorders; 4 cannot, remove dominant allele / replace an allele ; 5 dominant allele affects tissues in many parts of the body;	4
5(b)(i)	50\% / 1 in 2 / 0.5 / half ; A 100\% if candidate implies parent is homozygous dominant	1
5(b)(ii)	two from: advantage (max 1) 1 can choose whether to have children ; 2 can prepare for the future ; 3 (if negative) removes anxiety / AW ; not awarded with mp5 disadvantage (max 1) 4 (if positive) no treatment possible ; 5 (if positive) may lead to anxiety / AW ; not awarded with mp3 6 (if positive) social / financial, discrimination ; e.g. life insurance refusal 7 (if positive) may still not develop disease (ref. to below 39 repeats) ;	2
5(c)(i)	removing a cell from an embryo (for testing) ;	1
5(c)(ii)	to amplify the, DNA / gene, (from the embryo cell) ;	1

Question			Answer	Marks
5(c)(iii)	two from: 1 embryos might be destroyed ; 2 wrong for parents to choose / designer embryos; 3 contrary to, beliefs / values; 4 less chance of Huntington allele being passed on / decrease in frequency of Huntington allele ; 5 idea that people with the faulty allele who otherwise would not have children can now do so ;			2
6(a)(i)	1 as the eugenol con2 percentage at twoconc $\left(\mathrm{mmol} \mathrm{dm}^{-3}\right)$ 0.0 0.2 0.4 0.6 0.8 1.0	$\begin{gathered} \begin{array}{c} \text { anc } \\ \text { ations } \\ \% \\ \hline 0 \\ \hline 30 \\ \hline 50 \\ \hline 65 \\ \hline 72 \\ \hline 80 \end{array} \begin{array}{l} \\ \hline \end{array} \begin{array}{l} \\ \hline \end{array} \\ \hline \end{gathered}$	e decrease in sodium ion movement increases ;	2
6(a)(ii)	57-58 (\%) ;			1

Question	Answer	Marks
6(b)	five from: 1 reduced entry of Na^{+}into sensory neurone ; 2 eugenol prevents opening of sodium ion channels / described; 3 no / reduced, depolarisation of sensory neurone membrane; 4 receptor potential / threshold potential, not reached; 5 no / fewer, action potentials / impulses; 6 may affect sodium-potassium pump ; 7 resting potential not restored ; 8 action potentials / impulses, do not reach brain ;	5
7(a)	1 inorganic phosphate added to ADP / ADP + Pi ; 2 ref. to (named) phosphorylated compound ;	2
7(b)(i)	ester ;	1
7(b)(ii)	carrier of, 2C (unit)/ acetyl group / acetate, to, the Krebs cycle / oxaloacetate ;	1
7(b)(iii)	two from: 1 more C-H (bonds)/more reduced / more hydrogen ; 2 produces more reduced NAD ; 3 more, aerobic respiration / oxidative phosphorylation / chemiosmosis ; 4 produces more ATP per, gram / unit mass ;	2

Question	Answer	Marks
7(c)(i)	17 ;	1
7(c)(ii)	$0.71 \text {;; }$ one mark for $12 \div 17$ allow ecf from (i) for one mark	2
8(a)	two from: 1 (two or more) genes on same chromosome ; 2 not sex chromosome; 3 will be inherited together ;	2
8(b)	four from: 1 most offspring are, purple long and red round / parental phenotypes ; 2 fewer offspring are, purple round and red long / non-parental phenotypes ; 3 recombinants / new combinations of alleles; 4 (because of) crossing over ; 5 between the two gene loci ; 6 AVP ; e.g. COV is 12% / low COV / two genes not very far apart	4

Question	Answer	Marks
8(c)	three from:	
	1 change in, base (pair) / nucleotide, sequence in DNA ; 2 random / spontaneous ; due to 3 ref. to base, substitution / deletion / insertion ; 4 (during) DNA replication ; 5 failure of proof reading mechanism ; 6 ref. to mutagenic agents ; e.g. ionising radiation / UV radiation	

| Question | Answer |
| :---: | :--- | :--- |
| 9(a) | 1 doubht from:
 inner membrane
 2 folded / cristae ;
 3 increased / large, surface area ;
 4 has, ATP synthase / stalked particles ;
 5 has, carrier (proteins)/ cytochromes ;
 6 (site of) ETC / oxidative phosphorylation / chemiosmosis ;
 intermembrane space
 7 has low pH / high concentration of protons ;
 8 accepts protons from ETC / AW ;
 9 proton gradient between intermembrane space and matrix
 or protons move from intermembrane space to matrix ;
 10 ref. to ATP synthesis ;
 matrix
 11 contains enzymes ;
 12 site of, link reaction / the Krebs cycle ;
 outer membrane
 13 presence of carriers for, pyruvate / reduced NAD ;
 14 AVP ; e.g. ribosomes / DNA, plus function |

Question	Answer	Marks
9(b)	seven from: liver cells (max 6) 1 only glycolysis occurs ; 2 pyruvate, cannot enter mitochondrion / remains in the cytoplasm ; 3 (pyruvate) becomes, hydrogen acceptor / reduced ; 4 by reduced NAD (from glycolysis) ; 5 lactate produced ; 6 lactate dehydrogenase; 7 production of, 4 ATP / 2 ATP / small amount of ATP ; 8 allows glycolysis to continue ; yeast cells 9 decarboxylation / CO_{2} removed ; 10 ethanal becomes, hydrogen acceptor / reduced; 11 two steps (instead of one); 12 irreversible reaction (instead of reversible); 13 ethanol dehydrogenase; 14 ethanol produced;	7

Question	Answer	Marks
10(a)	eight from:	8
	1 chiasmata formation ;	
	2 crossing over ;	
	3 exchange of genetic material ;	
	4 between non-sister chromatids of homologous chromosomes;	
	5 at prophase 1;	
	6 new combination of alleles ;	
	7 linkage groups broken;	
	8 independent/ random, assortment, of homologous pairs / bivalents / AW ;	
	9 in metaphase 1;	
	102^{n} combinations / very large number of combinations ;	
	11 independent/ random, assortment of, chromatids / chromosomes (correct context) ;	
	12 in metaphase 2 ;	
	13 ref. to mutation ;	

Question	Answer	
10(b)	seven from:	
	1 ref. to TYR gene ; 2 normal gene product is tyrosinase ; 3 tyrosine converted to, DOPA / dopaquinone ; ora 4 melanin / pigment, made ; ora 5 in melanocytes ; 6 mutant allele is recessive ; 7 tyrosinase, not produced / inactive ; 8 affects, hair/skin / irises ; 9 only in homozygous recessive people ;	

