Cambridge
International
AS \& A Level

Cambridge Assessment International Education

Cambridge International Advanced Subsidiary and Advanced Level

PHYSICS
Paper 4 A Level Structured Questions
MARK SCHEME
Maximum Mark: 100

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the October/November 2017 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Question	Answer	Marks
1(a)(i)	direction or rate of transfer of (thermal) energy or (if different,) not in thermal equilibrium/energy is transferred	B1
1(a)(ii)	uses a property (of a substance) that changes with temperature	B1
1(b)	- temperature scale assumes linear change of property with temperature - physical properties may not vary linearly with temperature - agrees only at fixed points Any 2 points.	B2
1(c)(i)	$P t=m c(\Delta) \theta$	C1
	$95 \times 6 \times 60=0.670 \times 910 \times \Delta \theta$	M1
	$\Delta \theta=56{ }^{\circ} \mathrm{C}$ so final temperature $=56+24=80^{\circ} \mathrm{C}$	A1
	or	
	$95 \times 6 \times 60=0.67 \times 910 \times(\theta-24)$	(M1)
	so final temperature or $\theta=80^{\circ} \mathrm{C}$	(A1)

Question	Answer	Marks
1(c)(ii)	1. sketch: straight line from (0,24) to $(6,80)$	B1
	2. temperature drop due to energy loss $=(80-64)=16^{\circ} \mathrm{C}$	C1
	energy loss $=0.670 \times 910 \times(80-64)=9800 \mathrm{~J}$	A1
	or	
	energy to raise temperature to $64{ }^{\circ} \mathrm{C}=0.670 \times 910 \times(64-24)$	(C1)
	$\begin{array}{r} \quad=24400 \mathrm{~J} \\ \text { loss }=(95 \times 6 \times 60)-24400=9800 \mathrm{~J} \end{array}$	(A1)

Question	Answer	Marks
$2(\mathrm{a})$	(angular frequency $=) 2 \pi \times$ frequency or $2 \pi /$ period	
	B1. displacement $=2.0 \mathrm{~cm}$	A1
	2. amplitude $=1.5 \mathrm{~cm}$	A1
	reference to displacement of oscillations or displacement from equilibrium position or displacement from 2.0 cm	B1
	straight line indicates acceleration \propto displacement	B1
	negative gradient shows acceleration and displacement are in opposite directions	B1

Question	Answer	Marks
2(b)(iii)	$\omega^{2}=(-) 1 /$ gradient or $\omega^{2}=(-) \Delta a / \Delta s$ or $a=(-) \omega^{2} x$ and correct value of x	C1
	$\begin{aligned} & =\text { e.g. }(1.8 / 0.03) \text { or }(0.9 / 0.015) \text { or }(1.2 / 0.02) \text { etc. or } 0.9=\omega^{2} \times 0.015 \\ & =60 \end{aligned}$	C1
	$\begin{aligned} f & =\sqrt{ } 60 / 2 \pi \\ & =1.2 \mathrm{~Hz} \end{aligned}$	A1

Question	Answer	Marks
$3(\mathrm{a})$	force per unit mass	B1
$3(\mathrm{~b})$	changes in height much less than radius of Earth	M1
	so (radial) field lines are almost parallel or $g=G M / R^{2} \approx G M /(R+h)^{2}$	A1

Question	Answer	Marks
3(c)	gravitational force provides/is centripetal force	B1
	$G M m / r^{2}=m v^{2} / r$	C1
	$v=\left(2 \pi \times 1.5 \times 10^{11}\right) /(3600 \times 24 \times 365)=2.99 \times 10^{4}\left(\mathrm{~ms}^{-1}\right)$	C1
	$6.67 \times 10^{-11} M=1.5 \times 10^{11} \times\left(2.99 \times 10^{4}\right)^{2}$	C1
	$M=2.0 \times 10^{30} \mathrm{~kg}$	A1
	or	
	$G M m / r^{2}=m r \omega^{2}$	(C1)
	$\omega=2 \pi /(3600 \times 24 \times 365)=1.99 \times 10^{-7}\left(\mathrm{rad} \mathrm{s}^{-1}\right)$	(C1)
	$6.67 \times 10^{-11} M=\left(1.5 \times 10^{11}\right)^{3} \times\left(1.99 \times 10^{-7}\right)^{2}$	(C1)
	$M=2.0 \times 10^{30} \mathrm{~kg}$	(A1)
	or	
	$T^{2}=4 \pi^{2} r^{3} / G M$	(C2)
	$M=4 \pi^{2} \times\left(1.5 \times 10^{11}\right)^{3} /\left(\{3600 \times 24 \times 365\}^{2} \times 6.67 \times 10^{-11}\right)$	(C1)
	$=2.0 \times 10^{30} \mathrm{~kg}$	(A1)

Question	Answer	Marks
4(a)	- acts as 'return' (conductor) for signal - shielding from noise/crosstalk/interference Two sensible suggestions, 1 mark each.	B2
4(b)	- small bandwidth - (there is) noise/interference/crosstalk - large attenuation/energy loss - reflections due to poor impedance matching Two sensible suggestions, 1 mark each.	B2
4(c)	attenuation $=190 \times 14 \times 10^{-3}(=2.66 \mathrm{~dB})$	C1
	ratio $/ \mathrm{dB}=(-) 10 \lg \left(P_{2} / P_{1}\right)$	C1
	$\begin{aligned} & 2.66=-10 \lg \left(P_{\text {OUT }} / P_{\text {IN }}\right) \\ & P_{\text {OUT }} / P_{\text {IN }}=0.54 \end{aligned}$	C1
	$\begin{aligned} \text { fractional loss } & =1-\left(P_{\text {out }} / P_{\text {IN }}\right)=1-0.54 \\ & =0.46 \end{aligned}$	A1
	or	
	$\begin{aligned} & 2.66=10 \lg \left(P_{\text {IN }} / P_{\text {OUT }}\right) \\ & P_{\text {IN }} / P_{\text {OUT }}=1.85 \end{aligned}$	(C1)
	$\begin{aligned} \text { fractional loss } & =\left(P_{\mathrm{IN}}-P_{\mathrm{OUT}}\right) / P_{\mathrm{IN}}=(1.85-1) / 1.85 \\ & =0.46 \end{aligned}$	(A1)

Question	Answer	Marks
$5(\mathrm{a})(\mathrm{i})$	force proportional to product of charges and inversely proportional to square of separation	
	curve starting at $\left(R, F_{\mathrm{C}}\right)$	B1
	passing through $\left(2 R, 0.25 F_{\mathrm{C}}\right)$	B1
	passing through $\left(4 R, 0.06 F_{\mathrm{C}}\right)$	B1
	graph: $E=0$ when current constant $\left(0\right.$ to t_{1}, t_{2} to t_{3}, t_{4} to $\left.t_{5}\right)$	B1
	stepped from t_{1} to t_{2} and t_{3} to t_{4}	B1
	(steps) in opposite directions	B1
	later one larger in magnitude	B1

Question	Answer	Marks
6(a)(i)	$1 / T=1 /(2 C)+1 / C$	C1
	$T=2 / 3 C$ or $0.67 C$	A1
6(a)(ii)	same charge on Q as on combination	B1
	so p.d. is 6.0 V	B1
6(b)	P: p.d. will decrease (from 3.0V)	B1
	to zero	B1
	Q: p.d. will increase (from 6.0V)	B1
	to 9.0 V	B1

Question	Answer	Marks
7(a)(i)	gain of amplifier is very large	B1
	V^{+}is at earth (potential)	B1
	for amplifier not to saturate	M1
	difference between V^{-}and V^{+}must be very small or V^{-}must be equal to V^{+}	A1
	or	
	if $V^{-} \neq V^{+}$then feedback voltage	(M1)
	acts to reduce gap until $V^{-}=V^{+}$when stable	(A1)
7(a)(ii)	input impedance is infinite	B1
	(so) current in $\mathrm{R}_{1}=$ current in R_{2}	B1
	$\left(V_{\text {IN }}-0\right) / R_{1}=\left(0-V_{\text {OUT }}\right) / R_{2}$	B1
	$($ gain $=) V_{\text {OUT }} / V_{\text {IN }}=-R_{2} / R_{1}$	B1
7(b)	graph: correct inverted shape (straight diagonal line from $(0,0)$ to a negative potential, then a horizontal line, then a straight diagonal line back to the t-axis at the point where $V_{\mathbb{I N}}=0$)	B1
	horizontal line at correct potential of (-)9.0V	B1
	both ends of horizontal line occur at correct times (coinciding with when $V_{\text {IN }}=2.0 \mathrm{~V}$)	B1

Question	Answer	Marks
8(a)	DERQ and CFSP	B1
8(b)(i)	force (on charge) due to magnetic field = force due to electric field or $B q v=E q$ or $v=E / B$	B1
	$E=V_{H} / d$	B1
	$V_{\mathrm{H}}=\mathrm{Bvd}$	B1
8(b)(ii)	use of $I=n A q v$ and $A=d t$	M1
	algebra clear leading to $V_{H}=B I / n t q$	A1
8(c)	(in metal,) n is very large	M1
	(therefore) V_{H} is small	A1

Question	Answer	Marks
10(a)	heating depends on current ${ }^{2} / I^{2}$	B1
	and current ${ }^{2} / I^{2}$ is always positive	B1
	or	
	a.c. changes direction (every half cycle)	(B1)
	but heating effect is independent of current direction	(B1)
	or	
	voltage and current are always in phase in a resistor	(B1)
	so $V \times I$ is always positive	(B1)
	or	
	sketch graph drawn showing power against time	(B1)
	comment that power is always positive	(B1)
10(b)(i)	for same power (transmission, higher voltage) \rightarrow lower current	B1
	lower current \rightarrow less power loss in (transmission) cables	B1
10(b)(ii)	- voltage can be (easily) stepped up/down - transformers only work with a.c. - generators produce a.c. - easier to rectify than invert Two sensible suggestions, 1 mark each.	B2

Question	Answer	Marks
11(a)	packet/quantum of energy of electromagnetic/EM radiation	B1
11(b)(i)	$\begin{aligned} & E=h f \\ & 1.1 \times 10^{6} \times 1.60 \times 10^{-19}=6.63 \times 10^{-34} \times f \end{aligned}$	C1
	$f=2.7 \times 10^{20}\left(2.65 \times 10^{20}\right) \mathrm{Hz}$	A1
11(b)(ii)	$\begin{aligned} p & =h / \lambda=h f / c \\ & =\left(6.63 \times 10^{-34} \times 2.65 \times 10^{20}\right) /\left(3.00 \times 10^{8}\right) \end{aligned}$ or $\begin{aligned} p & =E / c \\ & =\left(1.1 \times 1.60 \times 10^{-13}\right) /\left(3.00 \times 10^{8}\right) \end{aligned}$	C1
	$p=5.9 \times 10^{-22}\left(5.87 \times 10^{-22}\right) \mathrm{Ns}$	A1
11(c)	$123 \times 1.66 \times 10^{-27} \times v=5.87 \times 10^{-22}$	C1
	$v=2.9 \times 10^{3} \mathrm{~ms}^{-1}$	A1

Question	Answer	Marks
12(a)	- emission from radioactive daughter products - self-absorption in source - absorption in air before reaching detector - detector not sensitive to all radiations - window of detector may absorb some radiation - dead-time of counter - background radiation Any two points.	B2
12(b)(i)	curve is not smooth or curve fluctuates/curve is jagged	B1
12(b)(ii)	clear evidence of allowance for background	B1
	half-life determined at least twice	B1
	half-life $=1.5$ hours (1 mark if in range 1.7-2.0; 2 marks if in range 1.4-1.6)	A2
12(c)	1. half-life: no change	M1
	because decay is spontaneous/independent of environment	A1
	2. count rate (likely to be or could be) different/is random/cannot be predicted	B1

