

Cambridge International Examinations

Cambridge International Advanced Level

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
MATHEMATICS			9709/32
Paper 3 Pure Mathe	matics 3 (P3)	Oct	ober/November 2017
			1 hour 45 minutes
Candidates answer o	n the Question Paper.		
Additional Materials:	List of Formulae (MF9)		

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

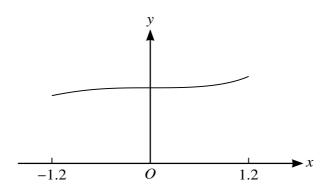
DO NOT WRITE IN ANY BARCODES.

Answer all the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an electronic calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.


At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 75.

1

The diagram shows a sketch of the curve $y = \frac{3}{\sqrt{(9-x^3)}}$ for values of x from -1.2 to 1.2.

(i) Use the trapezium rule, with two intervals, to estimate the value of

$$\int_{-1.2}^{1.2} \frac{3}{\sqrt{(9-x^3)}} \, \mathrm{d}x,$$

	giving your answer correct to 2 decimal places.	[3]
(ii)	Explain, with reference to the diagram, why the trapezium rule may be expected to give a gapproximation to the true value of the integral in this case.	ood [1]
		ĹIJ

	3 significant fig	,u105.					
••••••		••••••	•••••		•••••		•••••
			•••••				
					•••••		
					•••••		
••••••	•••••	•••••	•••••	•••••••••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••
••••••		•••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	•••••
	•••••••••••	•••••				•	•
	•••••						
••••••	••••••	••••••	••••••	• • • • • • • • • • • • • • • • • • • •	••••••	• • • • • • • • • • • • • • • • • • • •	•••••
••••••		••••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	•••••
			•••••				
•••••	•••••••	•••••	•••••	•••••••	•••••	••••••	•••••
•••••	••••••••••	•••••	•••••		•••••	• • • • • • • • • • • • • • • • • • • •	••••••

for $0^{\circ} < \theta < 90^{\circ}$.	

4

The	curve with equation $y = \frac{2 - \sin x}{\cos x}$ has one stationary point in the interval $-\frac{1}{2}\pi < x < \frac{1}{2}\pi$.	
(i)	Find the exact coordinates of this point.	[5]
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••
		•••••

••••••
 •••••
•••••
•••••

	ð
5	The variables x and y satisfy the differential equation
	$(x+1)\frac{\mathrm{d}y}{\mathrm{d}x} = y(x+2),$
	and it is given that $y = 2$ when $x = 1$. Solve the differential equation and obtain an expression for y in terms of x .

d١	$3x^2y - 3y^3$	
Show that $\frac{dy}{dx}$	$=\frac{3x^2y-3y^3}{9xy^2-x^3}.$	[4
••••••		•••••
••••••		•••••
••••••		•••••
••••••		•••••
•••••		••••••
•••••		
•••••••		
•••••		
•		

x-axis and find the coo	rainates of these po	oints.		[4
			 	•••••
			 	••••••
	••••••			••••••
	•••••		 	••••••
			 	••••••
			 	•••••

_	7D1 1 4.41	• 4•	41			•44
7	Throughout th	ns auestion	i the use of	t a calcul	ator is not	permitted.

The complex number $1 - (\sqrt{3})i$ is denoted by u.

(i)	Find the modulus and argument of u .	[2]
(ii)	Show that $u^3 + 8 = 0$.	[2]

(iii) On a sketch of an Argand diagram, shade the region whose points represent complex numbers zsatisfying both the inequalities $|z - u| \le 2$ and Re $z \ge 2$, where Re z denotes the real part of z.

[4]

8 Let $f(x) = \frac{8x^2 + 9x + 8}{(1 - x)(2x + 3)^2}$.	
--	--

(i) Express $f(x)$ in partial fractions.	[5]

																														١
•••									••••				• • • • •		· · · · ·				••••		••••						••••			
•	•••••	•••••	•••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	• • • • •	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	•••••	•••••	•••••
••		•••••	•••••	••••	••••	••••	••••	••••	••••	••••	••••	• • • •	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	•••••		•••••
••	•••••	••••	••••	••••		••••	••••	••••	••••			• • • •	• • • • •	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	•••••		•••••
••		••••	••••	••••					••••					••••			••••	••••		••••			••••				• • • • •			
									••••																					
••		•••••	••••	••••	••••	••••	••••	••••	••••	• • • • •	••••	••••	• • • • •	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	• • • • •		•••••
••		••••	••••	••••	••••	••••	••••	••••	••••			• • • •	• • • • •	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	•••••		•••••
••		••••	••••	••••	••••	••••	••••	••••	••••				••••	••••		••••	••••	••••	••••	••••	••••		••••	••••	••••		• • • • •	• • • • •		
••				••••					••••					••••			••••										• • • • •			
••			••••	•••••	••••		••••	••••	••••				••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••		••••	••••				•••••
••		••••	••••	••••	••••	••••	••••	••••	••••	• • • • •	• • • • •	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	• • • • •	• • • • •		•••••
••		•••••	••••	••••	••••		••••		••••			••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	• • • • •	•••••		•••••
••		••••	•••••	••••			••••	••••	••••				••••	••••	· · · · ·	••••	••••	••••	••••	••••	••••				••••		••••	•••••		
••									••••					••••													••••			
									••••																					
••	•••••	•••••	•••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	•••••	••••	••••	••••	••••	••••	••••	••••	••••	•••••	•••••	••••	••••	••••	••••	•••••	•••••	•••••
••	•••••	•••••	•••••	••••	••••	••••	••••	••••	••••	• • • • •		• • • •	• • • • •	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	••••	• • • • •	•••••	•••••	•••••
•••		••••	••••	••••	••••	••••	••••	••••	••••			• • • •	• • • • •	••••	••••	••••	••••	••••	••••	••••	••••		••••	••••	••••	••••	• • • • •	•••••		•••••
•••		••••	••••	••••					••••					••••	••••	••••	••••	••••		••••			••••			••••	• • • • •			
•••																														

	10	
9	It is given that $\int_{1}^{a} x^{\frac{1}{2}} \ln x dx = 2$, where $a > 1$.	
	(i) Show that $a^{\frac{3}{2}} = \frac{7 + 2a^{\frac{3}{2}}}{3 \ln a}$.	[5]

(ii)	Show by calculation that a lies between 2 and 4.	[2]
		•••••
(iii)	Use the iterative formula	
	$a_{n+1} = \left(\frac{7 + 2a_n^{\frac{3}{2}}}{3\ln a_n}\right)^{\frac{2}{3}}$	
	to determine a correct to 3 decimal places. Give the result of each iteration to	5 decimal places
	to determine a correct to 5 decimal places. Give the result of each heration to	[3]

	Calculate the acute angle between the planes p and q .
)	The point A on the line of intersection of p and q has y -coordinate equal to 2 . Find the e of the plane which contains the point A and is perpendicular to both the planes p and e your answer in the form $ax + by + cz = d$.
•	The point A on the line of intersection of p and q has y -coordinate equal to 2 . Find the e of the plane which contains the point A and is perpendicular to both the planes p and q your answer in the form $ax + by + cz = d$.
)	The point A on the line of intersection of p and q has y -coordinate equal to 2 . Find the of the plane which contains the point A and is perpendicular to both the planes p and your answer in the form $ax + by + cz = d$.
)	The point A on the line of intersection of p and q has y -coordinate equal to 2 . Find the e of the plane which contains the point A and is perpendicular to both the planes p and q your answer in the form $ax + by + cz = d$.
)	The point A on the line of intersection of p and q has y -coordinate equal to 2 . Find the e of the plane which contains the point A and is perpendicular to both the planes p and q your answer in the form $ax + by + cz = d$.
)	The point A on the line of intersection of p and q has y -coordinate equal to 2 . Find the of the plane which contains the point A and is perpendicular to both the planes p and your answer in the form $ax + by + cz = d$.
)	The point A on the line of intersection of p and q has y -coordinate equal to 2. Find the of the plane which contains the point A and is perpendicular to both the planes p and your answer in the form $ax + by + cz = d$.
)	The point A on the line of intersection of p and q has y -coordinate equal to 2. Find the of the plane which contains the point A and is perpendicular to both the planes p and your answer in the form $ax + by + cz = d$.
)	The point A on the line of intersection of p and q has y -coordinate equal to 2. Find the of the plane which contains the point A and is perpendicular to both the planes p and q your answer in the form $ax + by + cz = d$.

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.