Cambridge Assessment International Education

Cambridge International General Certificate of Secondary Education

PHYSICS

0625/33
Paper 3 Core Theory
October/November 2017

MARK SCHEME

Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the October/November 2017 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Question	Answer	Marks
1(a)(i)	A AND B cars identified	B1
	$A=$ fastest $A N D B=$ slowest	B1
1(a)(ii)	speed $=$ distance \div time in any recognised form	C1
	$50 \div 4$	C1
1(b)(i)	12.5 (m/s)	A1
	100×3.6 OR 360 (s) indicated	C1
	answers in the range 5-7 minutes	A1
1(b)(ii)	any one from:	
	car will move faster / slower at times / speed not constant	B1
	road will have bends / hills etc.	
	slower moving traffic or other sensible road conditions	

Question	Answer	Marks
$2(\mathrm{a})$	measuring cylinder (partially filled) with water/displacement can filled with water	
	object (submerged) into water owtte	
	new volume noted / displaced water collected in measuring cylinder	
	(volume of object $=$) difference in volumes / volume of water collected	
	density = mass \div volume written in any recognised form	C1
	$347 \div 18$	C1
	19.28 OR $19.3\left(\mathrm{~g} / \mathrm{cm}^{3}\right)$	A1

Question	Answer	Marks
$3(\mathrm{a})$	$w=m \times g$ in any recognised form	C1
	$2250 / 10$	C1
	$225(\mathrm{~kg})$	A1
	moment $=$ force \times distance from pivot in any recognised form	C1
	400×0.4 OR 400×40	C1
	160 OR 16 000	A1
	Nm OR Ncm	B1
3(b)(ii)	apply force further from pivot owtte	B1

Question	Answer	Marks
4(a)(i)	elastic	B1
4(a)(ii)	elastic	B1
	kinetic	B1
4(a)(iii)	kinetic	B1
	thermal	B1
4(b)	pull band further back / exert greater force on band / increase elastic potential energy	B1

Question	Answer	Marks
$5(\mathrm{a})$	Tyre B	B1
	larger/bigger surface area	B1
	less pressure (on ground)/weight distributed	B1
$5(\mathrm{~b})$	molecules gain kinetic energy / move faster	B1
	more (frequent)/ harder collisions (with tyre)	B1
	Increased/greater pressure (on tyre)	B1

Question	Answer	Marks
$6(\mathrm{a})($ (i)	mercury	B1
$6(\mathrm{a})($ (ii)	arrow between $0^{\circ} \mathrm{C}$ and start of capillary tube	B1
$6(\mathrm{a})($ (iii $)$	$0\left({ }^{\circ} \mathrm{C}\right)$ AND $100\left({ }^{\circ} \mathrm{C}\right)$	B1
$6(\mathrm{~b})$	emitter	B1
	$\underline{\text { conductor }}$	B1
	$\underline{\text { convection }}$	B1
	$\underline{\text { radiation }}$	B1

Question	Answer	Marks
$7(\mathrm{a})$	wavelength correctly indicated	B1
$7(\mathrm{~b})$	$\underline{12}(\mathrm{~cm})$	B1
$7(\mathrm{c})$	$40 / 60$	C1
	$0.67(\mathrm{~Hz})$	A1
$7(\mathrm{~d})$	direction of travel perpendicular to direction of vibration owtte	B1
$7(\mathrm{e})$	any component of the electromagnetic spectrum	B1

Question	Answer	Marks
$8(\mathrm{a})(\mathrm{i})$	top ray passes through f_{2}	B1
	bottom ray passes through f_{2}	B1
	refraction correctly shown either at centre of lens OR at both edges of lens	B1
8 8(a)(ii)	C to f_{2}	B1
$8(\mathrm{~b})(\mathrm{i})$	critical angle	B1
8(b)(ii)	ray internally reflected	B1
	reflecting angle $=$ incident angle	B1

Question	Answer	Marks
9 (a)	light travels faster than sound OR reverse argument	B1
9 9(b)	reflection (from building)/ bouncing back (from building)	B1
$9(\mathrm{c})$	time taken for first sound $=0.5 \mathrm{~s}$	C1
	Time taken for echo $=2.5 \mathrm{~s}$ OR time for sound to travel from hammer and return $=2.0 \mathrm{~s}$	C1
	2.0 s	A1
9(d)	quieter / less amplitude / less energy	B1

Question	Answer	Marks
10(a)(i)	two curved field lines drawn above and below the magnet	B1
	lines start and finish at the poles of the magnet	B1
10(a)(ii)	both arrows point left	B1
10(a)(iii)	(plotting) compass	B1
10(b)	place end on end / see if attraction / repulsion occurs	B1
	repulsion at one end	B1

Question	Answer	
$11(\mathrm{a})$	ammeter in series	Marks
	voltmeter across wire	B3
	two cells correctly linked positive to negative	
	V $=$ IR in any recognised form	C1
	R $=2.7 \div 0.3$	C1
	$9(\Omega)$	A1
$11(\mathrm{c})$	$1 \quad$ higher/more	B1
	2. lower/less	B1

Question	Answer	Marks
12(a)	Gamma	B1
12(b)	1 helium nuclei OR nuclide notation OR 2p, 2n	B1
	2 low/few cm of air/stopped by paper	B1
12(c)	2 half-life indicated	B1
	$\underline{25}$ (\%)	B1

