

Cambridge International Examinations

Cambridge International Advanced Level

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
FURTHER MATHEMA	ATICS		9231/13
Paper 1		O	ctober/November 2017
			3 hours
Candidates answer or	the Question Paper.		
Additional Materials:	List of Formulae (MF10)		

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of a calculator is expected, where appropriate.

Results obtained solely from a graphic calculator, without supporting working or reasoning, will not receive credit.

You are reminded of the need for clear presentation in your answers.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

1

Find $\sum_{r=1}^{\infty} (4r-3)(4r+1)$, giving your answer in its simplest form.	[4]

2

$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + 2\frac{\mathrm{d}x}{\mathrm{d}t} + 5x = 4 - 5t^2.$	[6]

i) Show that $\frac{d}{dx^{n+1}}(x)$	$\int_{0}^{n+1} \ln x = \frac{\mathrm{d}^n}{\mathrm{d}x^n} (x^n + (n+1)x^n \ln x).$	
i) Prove by mathema	tical induction that, for all positive integers n ,	
i) Trove by madicina	$\frac{\mathrm{d}^n}{\mathrm{d}x^n}(x^n \ln x) = n! \left(\ln x + 1 + \frac{1}{2} + \dots + \frac{1}{n}\right).$	
		•••••
		•••••

) .	Find the value of $(\alpha + 1)(\beta + 1)(\gamma + 1)$.	
	Find the value of $(\beta + \gamma)(\gamma + \alpha)(\alpha + \beta)$.	
-		
	Find the value of $(\beta + \gamma)(\gamma + \alpha)(\alpha + \beta)$.	
	Find the value of $(\beta + \gamma)(\gamma + \alpha)(\alpha + \beta)$.	
	Find the value of $(\beta + \gamma)(\gamma + \alpha)(\alpha + \beta)$.	
	Find the value of $(\beta + \gamma)(\gamma + \alpha)(\alpha + \beta)$.	
	Find the value of $(\beta + \gamma)(\gamma + \alpha)(\alpha + \beta)$.	
	Find the value of $(\beta + \gamma)(\gamma + \alpha)(\alpha + \beta)$.	
	Find the value of $(\beta + \gamma)(\gamma + \alpha)(\alpha + \beta)$.	
	Find the value of $(\beta + \gamma)(\gamma + \alpha)(\alpha + \beta)$.	

=	The curve	Chas	aquation	223	2,2,	21,3	16 – 0	`
•	The curve	C nas	equation	$2x^{\circ}$ +	$3x^{2}y -$	$3y^{\circ}$ –	10 = 0	J.

	oordinates of th					
••••••		•••••	•••••	•••••••	••••••	
					•••••	
	•••••	••••••		••••••	•••••	·····
•••••	•••••	•••••	•••••	•••••••	••••••	·····
•••••	•••••	•••••	•••••	••••••	••••••	·····
•••••		•••••			••••••	
•••••						
•••••		•••••			•••••	
•••••		•••••	•••••		•••••	

(ii)	Find the value of	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}$ at A.					[3]
		•••••	•••••	•••••	••••••	•••••	
			•••••				
			•••••		••••••	•••••	
		•••••	•••••	•••••	••••••	••••••	

Find the once of the twiggette ADC	
Find the area of the triangle ABC .	

-	perpendic								
•••••	•••••		•••••						
••••••	•••••••	••••••	••••••	••••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
•••••	•••••	••••••	••••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
•••••	•••••	••••••	••••••	•••••	•••••	••••••		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
	•••••	•••••	•••••			•••••		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
••••••			•••••						
Find the	cartesian	equation	of the p	lane thro	ugh A, B	and <i>C</i> .			
Find the	cartesian (equation	of the p	lane thro	ugh A,B	and <i>C</i> .			
Find the	cartesian (equation	of the p	lane thro	ugh <i>A</i> , <i>B</i>	and <i>C</i> .			
Find the	cartesian	equation	of the p	lane thro	ugh <i>A</i> , <i>B</i>	and C.			
Find the	cartesian	equation	of the p	lane thro	ugh <i>A</i> , <i>B</i>	and <i>C</i> .			
Find the	cartesian	equation	of the p	lane thro	ugh <i>A</i> , <i>B</i>	and <i>C</i> .			
Find the	cartesian	equation	of the p	lane thro	ugh <i>A</i> , <i>B</i>	and <i>C</i> .			
Find the	cartesian	equation	of the p	lane thro	ugh <i>A</i> , <i>B</i>	and <i>C</i> .			
Find the	cartesian	equation	of the p	lane thro	ugh <i>A</i> , <i>B</i>	and <i>C</i> .			
Find the	cartesian	equation	of the p	lane thro	ugh <i>A</i> , <i>B</i>	and <i>C</i> .			
Find the	cartesian	equation	of the p	lane thro	ugh <i>A</i> , <i>B</i>	and <i>C</i> .			
Find the	cartesian	equation	of the p	lane thro	ugh A, B	and <i>C</i> .			
Find the	cartesian	equation	of the p	lane thro	ugh <i>A</i> , <i>B</i>	and <i>C</i> .			
Find the	cartesian	equation	of the p	lane thro	ugh <i>A</i> , <i>B</i>	and <i>C</i> .			
Find the	cartesian	equation	of the p	lane thro	ugh <i>A</i> , <i>B</i>	and <i>C</i> .			
Find the	cartesian	equation	of the p	lane thro	ugh A, B	and <i>C</i> .			
Find the	cartesian	equation	of the p	lane thro	ugh <i>A</i> , <i>B</i>	and <i>C</i> .			

7 The linear transformation $T: \mathbb{R}^4 \to \mathbb{R}^4$ is represented by the matrix A, w	, where
--	---------

$$\mathbf{A} = \begin{pmatrix} 1 & -1 & -2 & 3 \\ 5 & -3 & -4 & 25 \\ 6 & -4 & -6 & 28 \\ 7 & -5 & -8 & 31 \end{pmatrix}.$$

Find the rank of A and a basis for the null space of T.	[7
	•••••

(ii)	Find the matrix product $\mathbf{A} \begin{pmatrix} -1\\1\\-1\\1 \end{pmatrix}$ and hence find the general solution of the equation $\mathbf{A}\mathbf{x} = \begin{pmatrix} 3\\21\\24\\27 \end{pmatrix}$.

8	Let	$I_n = \int_0^{\frac{1}{4}\pi} \sec^n x \mathrm{d}x \text{ for } n > 0.$
	(i)	Find the value of I_2 . [2]
	(2.5)	
	(ii)	Show that, for $n > 2$, $ (n-1)I_n = 2^{\frac{1}{2}n-1} + (n-2)I_{n-2}. $ [5]

		•••••																	
•••			••••••			•••••	••••					•••••	•••••	•••••		•••••	•••••	•••••	
•••							••••							•••••			•••••		•••••
					•••••	•••••	•••••	•••••			•••••			•••••		•••••	•••••		•••••
••							••••						•••••	•••••			•••••		•••••
						•••••	••••							•••••			•••••		•••••
														•••••					
					••••									• • • • • • •			••••		
•••	••••••	•••••	••••••	••••••	•••••	•••••	•••••												
•••	•••••	•••••	••••••	••••••	•••••	•••••	•••••	•••••								•••••			
•••	•••••	•••••	••••••		•••••	•••••	••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••
•••	•••••	•••••			•••••	•••••	•••••	•••••	•••••	•••••	•••••		•••••	•••••	••••••	•••••	•••••	•••••	•••••
•••	•••••	•••••			•••••	•••••	••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	••••••	•••••	•••••	•••••	•••••
•••	•••••	•••••			•••••	•••••	•••••	•••••	•••••	•••••	•••••		•••••	•••••	••••••	•••••	•••••	•••••	•••••
•••		•••••			•••••	•••••	•••••	•••••		•••••	•••••			•••••		•••••	•••••	•••••	•••••
•••					•••••	•••••	••••	•••••		•••••	•••••			•••••		•••••	•••••		•••••
•••							••••							•••••			•••••		••••
							••••							•••••			•••••		
							••••												
							•••••							• • • • • • • •			•••••		
•••	••••••	••••••	••••••	••••••	•••••	•••••	•••••	•••••	••••••	••••••	•••••	•••••	•••••	• • • • • • •	••••••	•••••	•••••	•••••	•••••
•••	•••••	•••••			•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	•••••	••••••	•••••	•••••	•••••	•••••

9	The curve	C has	equation

$$y = \frac{3x - 9}{(x - 2)(x + 1)}.$$

(i)	Find the equations of the asymptotes of C .	[2]
(ii)	Show that there is no point on C for which $\frac{1}{3} < y < 3$.	[4]

(iii)	Find the coordinates of the turning points of C .	[3]
(iv)	Sketch C.	[3]

4.0	/ • >						
10	(i)	Use de	: Moix	re's the	orem to	show	that

$\sin 5\theta = 5\sin \theta - 20\sin^3 \theta + 16\sin^5 \theta.$	[5]
	•••••

			•••••	•••••			•••••
•••••	•••••	•••••	••••••	•••••		•••••	•••••
•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	••••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••
Without usin	g a calculator,	find the exact	t values (of			
					272		
	$\sin \frac{1}{5}\pi \sin \frac{2}{5}$	$\pi \sin \frac{3}{5}\pi \sin \frac{4}{5}\pi$	and	$\sin^2(\frac{1}{5}\pi)$ +	$\sin^2(\frac{2}{5}\pi)$.		

11 Answer only **one** of the following two alternatives.

EITHER

(i)	The vector \mathbf{e} is an eigenvector of the matrix \mathbf{A} , with corresponding eigenvalue λ , and is also ar eigenvector of the matrix \mathbf{B} , with corresponding eigenvalue μ . Show that \mathbf{e} is an eigenvector of the matrix \mathbf{AB} with corresponding eigenvalue $\lambda\mu$.
(ii)	Find the eigenvalues and corresponding eigenvectors of the matrix A , where
	$\mathbf{A} = \begin{pmatrix} 0 & 1 & 3 \\ 3 & 2 & -3 \\ 1 & 1 & 2 \end{pmatrix}. $ [6]
	$\mathbf{A} = \begin{pmatrix} 0 & 1 & 3 \\ 3 & 2 & -3 \\ 1 & 1 & 2 \end{pmatrix}. $ [6]
	$\mathbf{A} = \begin{pmatrix} 0 & 1 & 3 \\ 3 & 2 & -3 \\ 1 & 1 & 2 \end{pmatrix}. \tag{6}$
	$\mathbf{A} = \begin{pmatrix} 0 & 1 & 3 \\ 3 & 2 & -3 \\ 1 & 1 & 2 \end{pmatrix}. $ [6]
	$\mathbf{A} = \begin{pmatrix} 0 & 1 & 3 \\ 3 & 2 & -3 \\ 1 & 1 & 2 \end{pmatrix}. \tag{6}$
	$\mathbf{A} = \begin{pmatrix} 0 & 1 & 3 \\ 3 & 2 & -3 \\ 1 & 1 & 2 \end{pmatrix}. \tag{6}$
	$\mathbf{A} = \begin{pmatrix} 0 & 1 & 3 \\ 3 & 2 & -3 \\ 1 & 1 & 2 \end{pmatrix}. $ [6]
	$\mathbf{A} = \begin{pmatrix} 0 & 1 & 3 \\ 3 & 2 & -3 \\ 1 & 1 & 2 \end{pmatrix}. $ [6
	$\mathbf{A} = \begin{pmatrix} 0 & 1 & 3 \\ 3 & 2 & -3 \\ 1 & 1 & 2 \end{pmatrix}. $ [6]
	$\mathbf{A} = \begin{pmatrix} 0 & 1 & 3 \\ 3 & 2 & -3 \\ 1 & 1 & 2 \end{pmatrix}. $ [6]

(iii)	The matrix B , where	

	/3	6	1 \
B =	1	-2	-1
	۱6	6	-2

has eigenvectors $\begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$. Find the eigenvalues of the matrix AB , and corresponding eigenvectors.	d state
	•••••
	•••••
	•••••
	•••••
	•••••
	•••••

•	1	n
◂	,	ĸ

The polar equation of a curve C is $r = a(1 + \cos \theta)$ for $0 \le \theta < 2\pi$, where a is a positive constant.	
(i) Sketch C.	[2]
(ii) Show that the cartesian equation of C is	
(ii) Show that the cartesian equation of C is $x^{2} + y^{2} = a(x + \sqrt{(x^{2} + y^{2})}).$	[2]
	r-3
	· • • • • •
	· • • • • •
	· • • • • •
	•••••

i)	Find the area of the sector of C between $\theta = 0$ and $\theta = \frac{1}{3}\pi$.	[4]
		••••••
		•••••
		••••••

	Find the arc length of C between the point where $\theta = 0$ and the point where $\theta = \frac{1}{3}\pi$.	
•		••
•		••
		••
		••
•		••
		••
		••
		••
		••
		••
		••
		••
		••
		••
		••

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.