MARK SCHEME

Maximum Mark: 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the October/November 2017 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method marks, awarded for a valid method applied to the problem.
A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.

B Mark for a correct result or statement independent of Method marks.
When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt answers which round to
cao correct answer only
dep dependent
FT follow through after error
isw ignore subsequent working
nfww not from wrong working
oe or equivalent
rot rounded or truncated
SC Special Case
soi seen or implied

Question	Answer	Marks	Guidance
1(i)	$A^{\prime} \cap B$	B1	
1(ii)	$A \cap B \cap C$	B1	
1(iii)	$A \cup B$	B1	
2(i)	$\mathrm{p}\left(\frac{1}{2}\right)=\frac{a}{8}+\frac{b}{4}-\frac{13}{2}+4$	M1	attempt at $p\left(\frac{1}{2}\right)$
	$\begin{aligned} & \mathrm{p}^{\prime}(x)=3 a x^{2}+2 b x-13 \\ & \mathrm{p}^{\prime}\left(\frac{1}{2}\right)=\frac{3 a}{4}+b-13 \end{aligned}$	M1	$\text { attempt at } p^{\prime}\left(\frac{1}{2}\right)$
	leading to $a+2 b=20$ and $3 a+4 b-52=0$	A1	at least one correct equation
	solution of simultaneous equations	DM1	
	$a=12, b=4$	A1	for both
2(ii)	$p(-1)=-12+4+13+4$	M1	
	9	A1	FT on their integer values of a and b
3(a)		B1	multiplication/dealing with power of $\frac{1}{2}$ or squaring
	$l=\frac{T^{2} g}{4 \pi^{2}}$ or $\left(\frac{T g^{\frac{1}{2}}}{2 \pi}\right)^{2}$	B1	for either
3(b)	$y^{2}-4 y+3=0$ leading to $y=1, y=3$	M1	reduction to quadratic equation and attempt to solve
	$x^{\frac{1}{3}}=1, x^{\frac{1}{3}}=3$	DM1	attempt to solve $x^{\frac{1}{3}}=k($ positive $k)$
	$x=1, x=27$	A2	A1 for each

Question	Answer	Marks	Guidance
4(i)	$\frac{1}{2}$	B1	
4(ii)	$\begin{aligned} & \lg y=m x^{2}+c \\ & \lg y=\frac{1}{2} x^{2}+1 \end{aligned}$	B2	-1 for each error
4(iii)	$y=10^{\left(\frac{x^{2}}{2}+1\right)}$	B1	dealing with \lg on their (ii)
	$y=10\left(10^{\frac{x^{2}}{2}}\right)$	B2	B1 for each, dependent on first B1
5(i)	$(0,20)$	B1	
5(ii)	31.7	B1	
5(iii)	$2 \mathrm{e}^{2 x}-8 \mathrm{e}^{-2 x}(+c)$	B2	B1 for each correct term
5(iv)	$\begin{aligned} & \text { Area of trapezium }=\frac{1}{2}(20+31.7) \\ & =25.86 \text { or } 25.85 \end{aligned}$	B1	
	$\left[2 \mathrm{e}^{2 x}-8 \mathrm{e}^{-2 x}\right]_{0}^{1}=\left(2 \mathrm{e}^{2}-8 \mathrm{e}^{-2}\right)-(-6)$	M1	substitution of both limits, must have come from integration of the form $a \mathrm{e}^{2 x}+b \mathrm{e}^{-2 x}$.
	19.7	A1	
	Required area $=6.15,6.16,6.17$	A1	
6(a)(i)	$\mathrm{f} \geqslant 3$	B1	must be using a correct notation
6(a)(ii)	$(4 x-1)^{2}+3=4$	M1	correct order
	solution of resulting quadratic equation	DM1	
	$x=0, x=\frac{1}{2}$	A1	both required

Question	Answer	Marks	Guidance
6(b)(i)	$x y-4 y=2 x+1$	M1	'multiplying out'
	$\begin{aligned} & x(y-2)=4 y+1 \\ & x=\frac{4 y+1}{y-2} \end{aligned}$	M1	collecting together like terms
	$\mathrm{h}^{-1}(x)=\frac{4 x+1}{x-2}$	A1	correct answer with correct notation
	Range $\mathrm{h}^{-1} \neq 4$	B1	must be using a correct notation
6(b)(ii)	$\begin{aligned} & \mathrm{h}^{2}(x)=\mathrm{h}\left(\frac{2 x+1}{x-4}\right) \\ & =\frac{2\left(\frac{2 x+1}{x-4}\right)+1}{\left(\frac{2 x+1}{x-4}\right)-4} \end{aligned}$	M1	dealing with h^{2} correctly
	dealing with fractions within fractions	M1	
	$=\frac{5 x-2}{17-2 x} \text { oe }$	A1	
7(i)	$\ln (2 x+1)-\ln (2 x-1)$	B1	
7(ii)	attempt to differentiate	M1	
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2}{2 x+1}-\frac{2}{2 x-1}+4$	A1	all correct
	attempt to obtain in required form	DM1	
	$=\frac{16 x^{2}-8}{4 x^{2}-1}$	A1	A1 all correct
7(iii)	When $\frac{\mathrm{d} y}{\mathrm{~d} x}=0,16 x^{2}-8=0$	M1	setting $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ and attempt to solve
	$x=\frac{1}{\sqrt{2}} \text { only }$	A1	

Question	Answer	Marks	Guidance
7(iv)	$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=\frac{32 x\left(4 x^{2}-1\right)-8 x\left(16 x^{2}-8\right)}{\left(4 x^{2}-1\right)^{2}}$	M1	attempt at second derivative and conclusion or equivalent method
	When $x=\frac{1}{\sqrt{2}} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}$ is +ve , so minimum	A1	
8(a)(i)	${ }^{8} C_{6} \times{ }^{6} C_{4}$	B1	either ${ }^{8} C_{6}$ or ${ }^{6} C_{4}$
	420	B1	
8(a)(ii)	${ }^{12} C_{8}+{ }^{12} C_{10}$	B2	B1 for each
	$=561$	B1	
	Alternate scheme: $1001-\left(2 \times{ }^{12} C_{9}\right)$	B1 B1	
	$=561$	B1	
8(b)(i)	136080	B1	
8(b)(ii)	No of ways ending with 0-15120	B1	
	No of ways ending with 5-13440	B1	
	Total 28560	B1	
8(b)(iii)	Starting with 6 or 8-13440	B1	
	Starting with 7 or 9-16800	B1	
	Total $=30240$	B1	
9(i)	$\tan \left(\frac{P A Q}{2}\right)=2.4$	M1	valid method
	$\begin{aligned} & P A Q=2.352(01 \ldots) \\ & P A Q=2.35 \text { correct to } 3 \mathrm{sf} \end{aligned}$	A1	must see greater than 3 sf then rounding
9(ii)	$P B Q=0.790$ or 0.792	B1	
9(iii)	$(2.352 \times 10)+(0.790 \times 24)$	M1,A1	M1 for correct attempt at an arc length A1 for one correct arc length
	= awrt 42.5	A1	

Question	Answer	Marks	Guidance
9(iv)	$\left(\left(\frac{1}{2} \times 24^{2} \times 0.790\right)-\left(\frac{1}{2} \times 24^{2} \times \sin 0.790\right)\right)$	B1,B1	B1 for a correct sector area allow, unsimplified B1 for a correct area of a triangle, allow unsimplified
	$+\left(\left(\frac{1}{2} \times 10^{2} \times 2.352\right)-\left(\frac{1}{2} \times 10^{2} \times \sin 2.352\right)\right)$	B1	correct plan, dependent on both previous B marks
	$\begin{aligned} & =22.94+82.1 \\ & =105 \end{aligned}$	B1	
10(a)	$\frac{3}{4}=\sin ^{2} 2 x$	B1	dealing correctly with cosec
	$\begin{aligned} & \sin 2 x= \pm \frac{\sqrt{3}}{2} \\ & 2 x=60,120,240,300 \end{aligned}$	M1	correct method of solution including dealing with $2 x$ correctly, may be implied by one correct solution.
	$x=30,60,120,150$	A2	A1 for each correct pair
10(b)	$\tan \left(y-\frac{\pi}{4}\right)=\frac{1}{\sqrt{3}}$	M1	dealing with order of operations to obtain a first solution
	$y-\frac{\pi}{4}=\frac{\pi}{6}, \frac{7 \pi}{6}$	M1	M1 for attempt to obtain a second solution
	$y=\frac{5 \pi}{12}, \frac{17 \pi}{12}$	A2	A1 for each

