## Cambridge International Examinations <br> Cambridge International General Certificate of Secondary Education

## CHEMISTRY

0620/11
Paper 1 Multiple Choice (Core)
October/November 2017

Additional Materials: Multiple Choice Answer Sheet
Soft clean eraser
Soft pencil (type B or HB is recommended)

## READ THESE INSTRUCTIONS FIRST

Write in soft pencil.
Do not use staples, paper clips, glue or correction fluid.
Write your name, Centre number and candidate number on the Answer Sheet in the spaces provided unless this has been done for you.
DO NOT WRITE IN ANY BARCODES.
There are forty questions on this paper. Answer all questions. For each question there are four possible answers A, B, C and D.
Choose the one you consider correct and record your choice in soft pencil on the separate Answer Sheet.
Read the instructions on the Answer Sheet very carefully.
Each correct answer will score one mark. A mark will not be deducted for a wrong answer.
Any rough working should be done in this booklet.
A copy of the Periodic Table is printed on page 16.
Electronic calculators may be used.

1 The diagram shows how the arrangement of particles changes when a substance changes state.


Which change of state is shown?
A boiling
B condensation
C evaporation
D sublimation

2 Which method can be used to separate a mixture of salt and water to obtain both parts of the mixture?

A crystallisation
B distillation
C evaporation
D filtration

3 A student put $25.0 \mathrm{~cm}^{3}$ of dilute hydrochloric acid into a conical flask.
The student added 2.5 g of solid sodium carbonate and measured the change in temperature of the mixture.

Which apparatus does the student need to use to obtain the most accurate results?
A balance, measuring cylinder, thermometer
B balance, pipette, stopwatch
C balance, pipette, thermometer
D burette, pipette, thermometer

4 Propanone, $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$, is a liquid at room temperature.
What is the boiling point of pure propanone?
A $\quad-61^{\circ} \mathrm{C}$ to $-51^{\circ} \mathrm{C}$
B $-56^{\circ} \mathrm{C}$
C $\quad 51^{\circ} \mathrm{C}$ to $61^{\circ} \mathrm{C}$
D $56^{\circ} \mathrm{C}$

5 Which statement about the boxes $\mathrm{P}, \mathrm{Q}$ and R is correct?


A Box P contains two compounds and box R contains two elements.
B Box $P$ contains two elements and box $Q$ contains a mixture.
C Box P contains two elements and box Q contains one compound.
D Box $Q$ contains two compounds and box $R$ contains a mixture.

6 The number of particles in atoms $\mathrm{W}, \mathrm{X}, \mathrm{Y}$ and Z are shown.

|  | protons | electrons | neutrons |
| :---: | :---: | :---: | :---: |
| W | 6 | 6 | 6 |
| X | 6 | 6 | 7 |
| Y | 7 | 7 | 7 |
| Z | 7 | 7 | 8 |

Which statement is correct?
A $W$ and $X$ are isotopes of carbon.
B X and Y are isotopes of nitrogen.
C X has a mass number of 12 .
D Z has an atomic number of 8 .

7 Which row describes the type of bonding present in substances 1 and 2?

|  | substance 1 | substance 2 |
| :---: | :---: | :---: |
| A | methane has ionic bonding | graphite has covalent bonding |
| B | graphite has ionic bonding | potassium chloride has covalent bonding |
| C | potassium chloride has ionic bonding | methane has covalent bonding |
| D | potassium chloride has ionic bonding | graphite has ionic bonding |

8 Substances with giant covalent structures can be used as lubricants and as cutting tools for hard materials.

The diagram shows how the atoms are arranged in two giant covalent substances, X and Y .

key

- strong covalent bond
weak attraction

Which statement is correct?
A Only X is used as a cutting tool and only Y is used as a lubricant.
B Only X is used as a lubricant and only Y is used as a cutting tool.
C $X$ and $Y$ are both used as cutting tools.
D $X$ and $Y$ are both used as lubricants.

9 The equation shows the thermal decomposition of magnesium carbonate ( $M_{\mathrm{r}}=84$ ).

$$
\mathrm{MgCO}_{3} \rightarrow \mathrm{MgO}+\mathrm{CO}_{2}
$$

Which mass of magnesium oxide is formed when 21.0 g of magnesium carbonate are completely decomposed?
A 1.9 g
B $\quad 4.0 \mathrm{~g}$
C $\quad 10.0 \mathrm{~g}$
D $\quad 40.0 \mathrm{~g}$

10 Electricity is passed through concentrated aqueous sodium chloride. Inert electrodes are used.


What is formed at the negative electrode?
A chlorine
B hydrogen
C oxygen
D sodium

11 Two chemical processes are described.

- During the combustion of gasoline, energy is $\qquad$ 1...... .
- During the electrolysis of sulfuric acid, energy is ......2...... .

Which words complete gaps 1 and 2?

|  | 1 | 2 |
| :---: | :---: | :---: |
| A | given out | given out |
| B | given out | taken in |
| C | taken in | given out |
| D | taken in | taken in |

12 When dilute sulfuric acid reacts with aqueous sodium hydroxide, the temperature of the solution increases.

Which words describe this reaction?
A endothermic and neutralisation
B endothermic and redox
C exothermic and neutralisation
D exothermic and redox

13 The mass of a beaker and its contents is plotted against time.
Which graph represents what happens when sodium carbonate reacts with an excess of dilute hydrochloric acid in an open beaker?
A





14 When blue copper(II) sulfate is heated, a white solid and water are formed.
The white solid turns blue and gives out heat when water is added to it.
Which terms describe the blue copper(II) sulfate and the reactions?

|  | the blue <br> copper(II) sulfate is | reactions |
| :---: | :---: | :---: |
| A | a mixture | can be reversed |
| B | a mixture | cannot be reversed |
| C | hydrated | can be reversed |
| D | hydrated | cannot be reversed |

15 Which changes increase the rate of reaction between calcium carbonate and dilute hydrochloric acid?

1 increasing the concentration of the acid
2 increasing the temperature
3 increasing the size of the pieces of calcium carbonate
A 1, 2 and 3
B 1 and 2 only
C 1 and 3 only
D 2 and 3 only

16 The equations for two reactions $P$ and $Q$ are given.

$$
\begin{array}{ll}
\mathrm{P} & 2 \underline{\mathrm{NaNO}_{2}}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NaNO}_{3} \\
\mathrm{Q} & 2 \underline{\mathrm{HgO}} \rightarrow 2 \mathrm{Hg}+\mathrm{O}_{2}
\end{array}
$$

In which of these reactions does oxidation of the underlined substance occur?

|  | P | Q |
| :---: | :---: | :---: |
| A | $\checkmark$ | $\checkmark$ |
| B | $\checkmark$ | $x$ |
| C | $x$ | $\checkmark$ |
| D | $x$ | $x$ |

17 What is not a typical characteristic of acids?
A They react with alkalis producing water.
B They react with all metals producing hydrogen.
C They react with carbonates producing carbon dioxide.
D They turn blue litmus paper red.

18 Magnesium, phosphorus and chlorine are elements in the same period of the Periodic Table.
Which row describes the type of oxide formed by each of these elements?

|  | magnesium | phosphorus | chlorine |
| :---: | :---: | :---: | :---: |
| A | acidic | acidic | basic |
| B | acidic | basic | basic |
| C | basic | acidic | acidic |
| D | basic | basic | acidic |

19 Zinc sulfate is made by reacting an excess of zinc oxide with dilute sulfuric acid.
The excess zinc oxide is then removed from the solution.
Which process is used to obtain solid zinc sulfate from the solution?
A crystallisation
B dissolving
C filtration
D fractional distillation

20 What is used to test for chlorine?
A a glowing splint
B damp litmus paper
C limewater
D potassium manganate(VII) solution

21 Which statements about the trends across a period of the Periodic Table are correct?
1 Aluminium is more metallic than sodium.
2 Beryllium is more metallic than carbon.
3 Boron is more metallic than lithium.
4 Magnesium is more metallic than silicon.
A 1 and 2
B 1 and 3
C 2 and 4
D 3 and 4

22 Astatine is an element in Group VII of the Periodic Table.
Astatine is $\qquad$ .1. reactive than iodine.

The melting point of astatine is $\qquad$ .2. than the melting point of iodine.

Astatine is $\qquad$ in colour than bromine.

Which words complete gaps 1, 2 and 3 ?

|  | 1 | 2 | 3 |
| :---: | :---: | :---: | :---: |
| A | less | higher | darker |
| B | less | lower | lighter |
| C | more | higher | darker |
| D | more | lower | lighter |

23 Which row describes the properties of a typical transition element?

|  | melting point | forms coloured <br> compounds | can act as <br> a catalyst |
| :---: | :---: | :---: | :---: |
| A | high | no | no |
| B | high | yes | yes |
| C | low | no | yes |
| D | low | yes | no |

24 Why is argon gas used to fill electric lamps?
A It conducts electricity.
B It glows when heated.
C It is less dense than air.
D It is not reactive.

25 What is a property of all metals?
A conduct electricity
B hard
C low melting points
D react with water

26 Which material is not involved in the large-scale extraction of iron from iron ore?
A bauxite
B calcium carbonate (limestone)
C carbon (coke)
D hematite

27 Some reactions of three metals are listed in the table.

| metal | metal reacts with dilute <br> hydrochloric acid | metal oxide is <br> reduced by carbon |
| :---: | :---: | :---: |
| P | yes | no |
| Q | no | yes |
| R | yes | yes |

What is the order of reactivity of the metals?

|  | most <br> reactive | least <br> reactive |  |
| :---: | :---: | :---: | :---: |
| A | P | R | Q |
| B | Q | P | R |
| C | R | P | Q |
| D | R | Q | P |

28 Which uses of the metals shown are both correct?

|  | aluminium | stainless steel |
| :---: | :---: | :---: |
| A | aircraft bodies | cutlery |
| B | car bodies | aircraft bodies |
| C | chemical plant | food containers |
| D | food containers | car bodies |

29 The flow chart shows stages in the treatment of river water to produce drinking water.


What occurs at stages X and Y ?

|  | X | Y |
| :---: | :---: | :---: |
| A | distillation | chlorination |
| B | distillation | filtration |
| C | filtration | chlorination |
| D | filtration | distillation |

30 Which gas is over $30 \%$ of air?
A argon
B carbon dioxide
C nitrogen
D oxygen

31 Iron is a metal that rusts in the presence of oxygen and water.
Mild steel is used for ......1...... and is prevented from rusting by ......2...... .
Stainless steel does not rust. It is produced by ......3...... iron with another metal.
Which words complete gaps 1,2 and 3 ?

|  | 1 | 2 | 3 |
| :---: | :---: | :---: | :---: |
| A | car bodies | greasing | covering |
| B | car bodies | painting | mixing |
| C | cutlery | greasing | covering |
| D | cutlery | painting | mixing |

32 A mixture produces a gas both when it reacts with an acid and when it reacts with an alkali.
Which ions are present in the mixture?
A ammonium ions and carbonate ions
B ammonium ions and oxide ions
C hydrogen ions and carbonate ions
D hydrogen ions and oxide ions

33 Some marble chips (calcium carbonate) are heated strongly and substances X and Y are formed.
Substance X is a white solid that reacts with water, giving out heat. Substance Y is a colourless gas.

What are substances $X$ and $Y$ ?

|  | X | Y |
| :---: | :---: | :---: |
| A | calcium chloride | oxygen |
| B | calcium hydroxide | carbon dioxide |
| C | calcium oxide | carbon dioxide |
| D | calcium sulfate | oxygen |

34 The structures of some organic molecules are shown.
1




2
3
4

Which structures represent an alkane with four carbon atoms?
A 1 only
B 2 and 3
C 2 and 4
D 3 and 4

35 Some of the fractions obtained from the fractional distillation of petroleum are used as fuels for vehicles.

Which two fractions are used as fuels for vehicles?
A bitumen fraction and gasoline fraction
B bitumen fraction and naphtha fraction
C gasoline fraction and kerosene fraction
D kerosene fraction and lubricating fraction

36 Burning fossil fuels releases heat energy.
Which substance is not a fossil fuel?
A coal
B hydrogen
C natural gas
D petroleum
$37 \mathrm{X}, \mathrm{Y}$ and Z are three hydrocarbons.
X $\quad \mathrm{CH}_{2}=\mathrm{CH}_{2}$
Y $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}_{2}$
Z $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}$

What do compounds $\mathrm{X}, \mathrm{Y}$ and Z have in common?
1 They are all alkenes.
2 They are all part of the same homologous series.
3 They all have the same boiling point.
A 1, 2 and 3
B 1 and 2 only
C 1 and 3 only
D 2 and 3 only

38 The table shows bonds that are present and bonds that are not present in compound X .

| bond |  |
| :---: | :---: |
| C-C | $\checkmark$ |
| C=C | $x$ |
| C-H | $\checkmark$ |
| C-O | $\checkmark$ |
| C=O | $\checkmark$ |
| O-H | $\checkmark$ |

What type of compound is X ?
A a carboxylic acid
B an alcohol
C an alkane
D an alkene

39 The diagram shows a reaction sequence.


Which row names the processes $X, Y$ and $Z$ ?

|  | X | Y | Z |
| :---: | :---: | :---: | :---: |
| A | cracking | fermentation | respiration |
| B | cracking | hydration | combustion |
| C | distillation | fermentation | respiration |
| D | distillation | hydration | combustion |

40 Molecules of a substance react together as shown.


Which type of reaction has taken place?
A cracking
B oxidation
C polymerisation
D reduction

## BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

| © | The Periodic Table of Elements |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 而 | Group |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $\begin{aligned} & \text { O } \\ & \text { N } \end{aligned}$ | I | II |  |  |  |  |  |  |  |  |  |  | III | IV | V | VI | VII | VIII |
| $\stackrel{\rightharpoonup}{\nu}$ |  |  |  |  | Key |  |  | 1 <br> H <br> hydrogen <br> 1 |  |  |  |  |  |  |  |  |  | $\begin{gathered} 2 \\ \mathrm{He} \\ \text { helium } \\ 4 \end{gathered}$ |
|  | $\begin{gathered} 3 \\ \mathrm{Li} \\ \substack{\text { lithium } \\ 7} \end{gathered}$ | 4 <br> Be <br> beryllium <br> 9 |  |  | mic num ic sy <br> name ve atomic |  |  |  |  |  |  |  | $\begin{gathered} \hline 5 \\ \mathrm{~B} \\ \text { boron } \\ 11 \end{gathered}$ | $\begin{gathered} 6 \\ \mathrm{C} \\ \text { carbon } \\ 12 \end{gathered}$ | $\begin{gathered} 7 \\ \mathrm{~N} \\ \substack{\text { nitrogen } \\ 14} \end{gathered}$ | $\begin{gathered} 8 \\ \mathrm{O} \\ \text { oxygen } \\ 16 \end{gathered}$ | $\begin{gathered} 9 \\ \mathrm{~F} \\ \substack{\text { fluorine } \\ 19} \end{gathered}$ | 10 <br> Ne <br> neon 20 |
|  |  | 12 Mg magnesium 24 |  |  |  |  |  |  |  |  |  |  |  | $\begin{gathered} \hline 14 \\ \mathrm{Si} \\ \substack{\text { silicon } \\ 28} \end{gathered}$ | 15 P $\substack{\text { phosphorus } \\ 31}$ | $\begin{gathered} 16 \\ \mathrm{~S} \\ \substack{\text { sulfur } \\ 32} \end{gathered}$ | $\begin{gathered} 17 \\ \mathrm{Cl} \\ \text { chlorine } \\ 35.5 \end{gathered}$ | $\begin{gathered} 18 \\ \mathrm{Ar} \\ \text { argon } \\ 40 \end{gathered}$ |
|  | 19 <br> K <br> potassium <br> 39 | $\begin{gathered} 20 \\ \mathrm{Ca} \\ \text { calcium } \\ 40 \end{gathered}$ | 21Scscandium <br> 45 | $\begin{gathered} 22 \\ \mathrm{Ti} \\ \text { titanium } \\ 48 \end{gathered}$ | 23Vvanadium <br> 51 | $\begin{gathered} 24 \\ \mathrm{Cr} \\ \text { chromium } \\ 52 \end{gathered}$ | 25 <br> Mn <br> manganese <br> 55 | $\begin{gathered} 26 \\ \text { Fe } \\ \text { iron } \\ 56 \end{gathered}$ | $\begin{gathered} 27 \\ \text { Co } \\ \text { cobalt } \\ 59 \end{gathered}$ | $\begin{gathered} 28 \\ \mathrm{Ni} \\ \text { nickel } \\ 59 \end{gathered}$ | $\begin{gathered} 29 \\ \mathrm{Cu} \\ \text { copper } \\ 64 \end{gathered}$ | $\begin{gathered} 30 \\ \mathrm{Zn} \\ \text { zinc } \\ 65 \end{gathered}$ | 31 Ga <br> gallium 70 | 32 <br> Ge <br> germanium 73 | 33 <br> As <br> arsenic 75 | 34 <br> Se <br> selenium 79 | $\begin{gathered} 35 \\ \mathrm{Br} \\ \text { bromine } \\ 80 \end{gathered}$ | $\begin{gathered} 36 \\ \mathrm{Krypton} \\ 84 \end{gathered}$ |
| $\begin{aligned} & \stackrel{\text { O}}{1} \\ & \stackrel{N}{S} \end{aligned}$ | 37 Rb rubidium 85 | 38 Sr strontium 88 | $\begin{gathered} 39 \\ \mathrm{Y} \\ \text { yytrium } \\ 89 \end{gathered}$ | $\begin{gathered} 40 \\ \mathrm{Zr} \\ \text { zirconium } \\ 91 \end{gathered}$ | 41 <br> Nb <br> niobium <br> 93 | 42 <br> Mo <br> molybdenum <br> 96 | 43 Tc <br> technetium $\qquad$ | $\underset{\substack{44 \\ \text { ruthenium } \\ 101}}{ }$ | $\begin{gathered} 45 \\ \mathrm{Rh} \\ \text { rhodium } \\ 103 \end{gathered}$ | 46Pdpalladium <br> 106 | $\begin{gathered} 47 \\ \mathrm{Ag} \\ \text { silver } \\ 108 \end{gathered}$ | 48 $\substack{\text { cadmium } \\ 112}$ | $\begin{gathered} 49 \\ \text { In } \\ \text { indium } \\ 115 \end{gathered}$ | $\begin{gathered} 50 \\ \text { Sn } \\ \begin{array}{c} \text { tin } \\ 119 \end{array} \end{gathered}$ | $\substack{51 \\ \text { antimony } \\ 122}$ $\mathrm{Sb}^{2}$ | $\begin{gathered} 52 \\ \mathrm{Te} \\ \text { tellurium } \\ 128 \end{gathered}$ | $\begin{gathered} 53 \\ \text { I } \\ \text { iodine } \\ 127 \end{gathered}$ | $\begin{gathered} 54 \\ \text { Xe } \\ \text { xenon } \\ 131 \end{gathered}$ |
| $\underset{\stackrel{\rightharpoonup}{\mathrm{O}}}{\stackrel{\rightharpoonup}{\lambda}}$ | $\begin{gathered} 55 \\ \mathrm{CS} \\ \text { caesium } \\ 133 \end{gathered}$ | 56 <br> Ba <br> barium <br> 137 | $\begin{gathered} \hline 57-71 \\ \text { lanthanoids } \end{gathered}$ | $\begin{gathered} 72 \\ \mathrm{Hf} \\ \text { hafnium } \\ 178 \end{gathered}$ | $\begin{gathered} 73 \\ \mathrm{Ta} \\ \substack{\text { tantalum } \\ 181} \end{gathered}$ | $\begin{gathered} 74 \\ \text { W } \\ \text { tungsten } \\ 184 \end{gathered}$ | $\begin{gathered} 75 \\ \mathrm{Re} \\ \text { rhenium } \\ 186 \end{gathered}$ | $\begin{gathered} 76 \\ \text { Os } \\ \text { osmium } \\ 190 \end{gathered}$ | $\begin{gathered} \hline 77 \\ \mathrm{Ir} \\ \text { iridium } \\ 192 \end{gathered}$ | $\begin{gathered} 78 \\ \mathrm{Pt} \\ \text { platinum } \\ 195 \end{gathered}$ | 79 <br> Au <br> gold <br> 197 | $\begin{gathered} 80 \\ \mathrm{Hg} \\ \text { mercury } \\ 201 \end{gathered}$ | $\begin{gathered} 81 \\ \mathrm{~T} l \\ \text { thallium } \\ 204 \end{gathered}$ | $\begin{gathered} 82 \\ \mathrm{~Pb} \\ \text { lead } \\ 207 \\ \hline \end{gathered}$ | 83 Bi bismuth 209 | 84 <br> Po <br> polonium <br> - | $\begin{aligned} & 85 \\ & \text { At } \end{aligned}$ astatine $-$ | $\begin{gathered} 86 \\ \mathrm{Rn} \\ \text { radon } \\ - \end{gathered}$ |
|  | 87 <br> Fr <br> francium <br> - | 88 Ra <br> radium - | $\begin{aligned} & \text { 89-103 } \\ & \text { actinoids } \end{aligned}$ | rutherfordium - | 105 <br> Db <br> dubnium <br> - | 106 Sg seaborgium - | $\begin{aligned} & \hline 107 \\ & \mathrm{Bh} \end{aligned}$ <br> bohrium - | $\begin{aligned} & 108 \\ & \mathrm{Hs} \end{aligned}$ <br> hassium | 109 Mt <br> meitnerium | 110 Ds <br> darmstadtium - | 111 <br> Rg <br> roentgenium <br> - |  |  |  |  | 116 <br> $L V$ <br> livermorium <br> - |  |  |

lanthanoids
actinoids

| 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\underset{\text { lanthanum }}{\text { La }}$ $139$ | Ce <br> cerium <br> 140 | Pr <br> praseodymium <br> 141 | $\underset{\substack{\text { neodymium } \\ 144}}{\mathrm{Nd}}$ 144 | Pm <br> promethium | Sm <br> samarium <br> 150 | Eu <br> europium <br> 152 | Gd <br> gadolinium <br> 157 | Tb <br> terbium 159 | $\underset{\substack{\text { dysprosium } \\ 163}}{\text { Dy }}$ | Ho <br> holmium 165 | $\begin{gathered} \text { Er } \\ \text { erbium } \\ 167 \end{gathered}$ | Tm <br> thulium <br> 169 | Yb <br> ytterbium 173 | Lu <br> lutetium <br> 175 |
| 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 |
| Ac <br> actinium | Th <br> thorium <br> 232 | Pa <br> protactinium <br> 231 | $\underset{\substack{\text { uranium } \\ 238}}{\bigcup}$ | Np <br> neptunium | Pu <br> plutonium | Am <br> americium | Cm <br> curium | Bk <br> berkelium | Cf <br> californium | Es <br> einsteinium | Fm <br> fermium | Md <br> mendelevium | No <br> nobelium | Lr lawrencium |

The volume of one mole of any gas is $24 \mathrm{dm}^{3}$ at room temperature and pressure (r.t.p.).

