

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

0620/21 **CHEMISTRY**

October/November 2017 Paper 2 Multiple Choice (Extended)

45 minutes

Additional Materials: Multiple Choice Answer Sheet

Soft clean eraser

Soft pencil (type B or HB is recommended)

READ THESE INSTRUCTIONS FIRST

Write in soft pencil.

Do not use staples, paper clips, glue or correction fluid.

Write your name, Centre number and candidate number on the Answer Sheet in the spaces provided unless this has been done for you.

DO **NOT** WRITE IN ANY BARCODES.

There are forty questions on this paper. Answer all questions. For each question there are four possible answers A, B, C and D.

Choose the one you consider correct and record your choice in soft pencil on the separate Answer Sheet.

Read the instructions on the Answer Sheet very carefully.

Each correct answer will score one mark. A mark will not be deducted for a wrong answer.

Any rough working should be done in this booklet.

A copy of the Periodic Table is printed on page 16.

Electronic calculators may be used.

The syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

This document consists of 15 printed pages and 1 blank page.

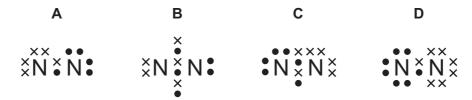
- 1 Which process causes the greatest increase in the distance between particles?
 - **A** condensation
 - **B** freezing
 - **C** melting
 - **D** sublimation
- 2 A student put 25.0 cm³ of dilute hydrochloric acid into a conical flask.

The student added 2.5 g of solid sodium carbonate and measured the change in temperature of the mixture.

Which apparatus does the student need to use to obtain the most accurate results?

- A balance, measuring cylinder, thermometer
- B balance, pipette, stopwatch
- **C** balance, pipette, thermometer
- **D** burette, pipette, thermometer
- **3** The results obtained from a chromatogram are shown.

	distance travelled/cm	
solvent	5.0	
substance X	3.0	
substance Y	2.5	


Which row gives the R_f values of substance X and substance Y?

	R _f (X)	R _f (Y)
Α	0.5	0.6
В	0.6	0.5
С	1.6	2.0
D	2.0	1.6

- **4** Two statements about silicon(IV) oxide are given.
 - 1 It is a hard substance.
 - 2 It has a macromolecular structure with strong covalent bonds.

Which is correct?

- **A** Both statements are correct and statement 2 explains statement 1.
- **B** Both statements are correct but statement 2 does not explain statement 1.
- **C** Statement 1 is correct but statement 2 is not correct.
- **D** Statement 2 is correct but statement 1 is not correct.
- 5 Which statement explains why isotopes of the same element have the same chemical properties?
 - **A** They have a different number of neutrons in the nucleus.
 - **B** They have the same number of neutrons in the nucleus.
 - **C** They have the same number of outer shell electrons.
 - **D** They have the same number of protons as neutrons.
- **6** Which dot-and-cross diagram shows the outer shell electron arrangement in a molecule of nitrogen?

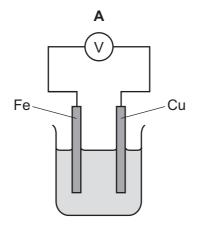
7 The equation for the reaction between barium chloride solution and dilute sulfuric acid is shown.

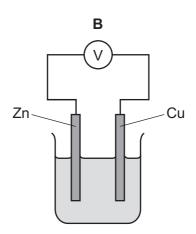
$$BaCl_2 + H_2SO_4 \rightarrow BaSO_4 + 2HCl$$

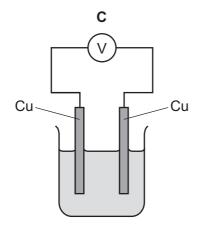
Which row shows the state symbols for this equation?

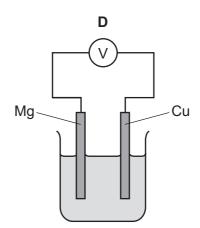
	BaCl ₂	H ₂ SO ₄	BaSO ₄	2HC <i>l</i>
Α	(aq)	(aq)	(s)	(aq)
В	(aq)	(I)	(s)	(aq)
С	(1)	(aq)	(s)	(1)
D	(aq)	(I)	(aq)	(I)

8 A compound is analysed and found to contain 85.7% carbon and 14.3% hydrogen.


What is its empirical formula?


- A CH
- B CH₂
- **C** C₂H₄
- \mathbf{D} C₆H


9 Which statements about the electrolysis of concentrated copper(II) chloride are correct?


- 1 Electrons are transferred from the cathode to the copper(II) ions.
- 2 Electrons move round the external circuit from the cathode to the anode.
- 3 Chloride ions are attracted to the anode.
- 4 Hydroxide ions transfer electrons to the cathode.
- **A** 1 and 3
- **B** 1 and 4
- **C** 2 and 3
- **D** 2 and 4

10 Which metal combination produces the highest voltage reading in the cells shown?

11 The compound hydrazine is used as a rocket fuel. It has the structural formula shown.

One of the reactions of hydrazine is shown. This reaction is exothermic.

$$N_2H_4 \rightarrow N_2 + 2H_2$$

The bond energies are shown in the table.

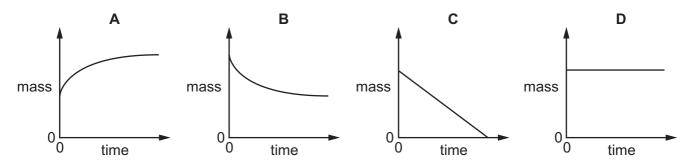
	bond energy in kJ/mol	
H–H	+436	
N–H	+390	
N–N	+160	
N≡N	+945	

What is the energy change for this reaction?

A -339 kJ/mol

B -97 kJ/mol

C +97 kJ/mol


D +339 kJ/mol

12 Which statement describes an exothermic reaction?

- A The energy absorbed for bond breaking is greater than the energy released by bond formation.
- **B** The energy absorbed for bond breaking is less than the energy released by bond formation.
- **C** The energy released by bond breaking is greater than the energy absorbed for bond formation.
- **D** The energy released by bond breaking is less than the energy absorbed for bond formation.

13 The mass of a beaker and its contents is plotted against time.

Which graph represents what happens when sodium carbonate reacts with an excess of dilute hydrochloric acid in an open beaker?

14 Copper(II) oxide reacts with hydrogen.

$$CuO + H_2 \rightarrow Cu + H_2O$$

Which row is correct?

	oxidising agent	reducing agent
Α	H_2	CuO
В	CuO	H_2
С	H ₂ O	Cu
D	Cu	H_2O

15 Ethanoic acid reacts slowly with calcium carbonate.

Which statements explain why an increase in temperature increases the rate of the reaction?

- 1 The activation energy of the reaction is decreased.
- 2 There is an increase in collision rate.
- 3 The particles have more energy.
- 4 There will be fewer successful collisions.
- **A** 1 and 2 **B** 1 and 3 **C** 2 and 3 **D** 2 and 4
- 16 Methane reacts with steam to produce hydrogen and carbon monoxide.

The equation for the reaction is shown.

$$CH_4(g) + H_2O(g) \rightleftharpoons 3H_2(g) + CO(g)$$

The reaction is reversible. The forward reaction is endothermic.

Which changes in temperature and pressure increase the equilibrium yield of carbon monoxide?

	temperature	pressure
Α	decrease	decrease
В	decrease	increase
С	increase	decrease
D	increase	increase

17 Some properties of four oxides are listed.

Oxide 1 reacts with both acids and alkalis to form salts.

Oxide 2 reacts with acids to form salts but does not react with alkalis.

Oxide 3 reacts with alkalis to form salts but does not react with acids.

Oxide 4 does not react with acids or alkalis.

Which row describes the oxides?

	oxide 1	oxide 2	oxide 3	oxide 4
Α	amphoteric	acidic	basic	neutral
В	amphoteric	basic	acidic	neutral
С	neutral	acidic	basic	amphoteric
D	neutral	basic	acidic	amphoteric

- **18** What is **not** a typical characteristic of acids?
 - **A** They react with alkalis producing water.
 - **B** They react with **all** metals producing hydrogen.
 - **C** They react with carbonates producing carbon dioxide.
 - **D** They turn blue litmus paper red.
- 19 Zinc sulfate is made by reacting an excess of zinc oxide with dilute sulfuric acid.

The excess zinc oxide is then removed from the solution.

Which process is used to obtain solid zinc sulfate from the solution?

- **A** crystallisation
- **B** dissolving
- **C** filtration
- D fractional distillation
- **20** What is used to test for chlorine?
 - A a glowing splint
 - B damp litmus paper
 - **C** limewater
 - **D** potassium manganate(VII) solution

21	Which statements	about the trends across	a period of the	Periodic Table:	are correct?
4 I	Willon Statements		a belieu di tile	I CHOOL TADIC	are correct:

- 1 Aluminium is more metallic than sodium.
- 2 Beryllium is more metallic than carbon.
- 3 Boron is more metallic than lithium.
- 4 Magnesium is more metallic than silicon.

A 1 and 2

B 1 and 3

C 2 and 4

D 3 and 4

22 Astatine is an element in Group VII of the Periodic Table.

Astatine is1..... reactive than iodine.

The melting point of astatine is2..... than the melting point of iodine.

Astatine is3..... in colour than bromine.

Which words complete gaps 1, 2 and 3?

	1	2	3
Α	less	higher	darker
В	less	lower	lighter
С	more	higher	darker
D	more	lower	lighter

23 Which row describes the properties of a typical transition element?

	melting point	forms coloured compounds	can act as a catalyst
Α	high	no	no
В	high	yes	yes
С	low	no	yes
D	low	yes	no

24 Why is argon gas used to fill electric lamps?

- A It conducts electricity.
- **B** It glows when heated.
- C It is less dense than air.
- **D** It is not reactive.

- 25 What is a property of all metals?
 - A conduct electricity
 - **B** hard
 - **C** low melting points
 - **D** react with water
- **26** Aluminium is extracted by the electrolysis of aluminium oxide.

Which statement is **not** correct?

- **A** Aluminium ions are oxidised at the cathode.
- **B** Carbon dioxide is made at the anode.
- **C** Cryolite is added to lower the melting point of the aluminium oxide.
- **D** The electrodes are made from graphite.
- 27 Which row describes how the metals are used?

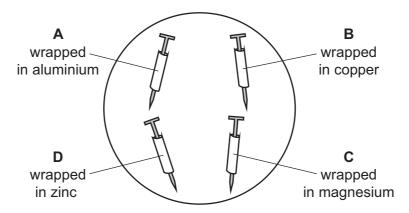
	mixed with zinc to form brass	used to galvanise iron
Α	aluminium	tin
В	aluminium	zinc
С	copper	tin
D	copper	zinc

28 Information about the nitrates and carbonates of two metals, Q and R, is shown.

	appearance	solubility in water	effect of heat
nitrate of Q	white solid	soluble	colourless gas evolved which relights a glowing splint
carbonate of Q	white solid	soluble	no reaction
nitrate of R	white solid	soluble	brown gas evolved
carbonate of R	white solid	insoluble	colourless gas evolved which turns limewater milky

Which statement is correct?

- **A** Q is calcium and R is magnesium.
- **B** Q is magnesium and R is sodium.
- **C** Q is potassium and R is copper.
- **D** Q is sodium and R is calcium.
- 29 The flow chart shows stages in the treatment of river water to produce drinking water.


What occurs at stages X and Y?

	X	Y
Α	distillation	chlorination
В	distillation	filtration
С	filtration	chlorination
D	filtration	distillation

30 Four iron nails had different metals wrapped around them.

The nails were placed in an open dish filled with water and left for a week.

Which iron nail has no protection against rusting?

31 Ammonia is made by the Haber process.

$$N_2 + 3H_2 \rightleftharpoons 2NH_3$$

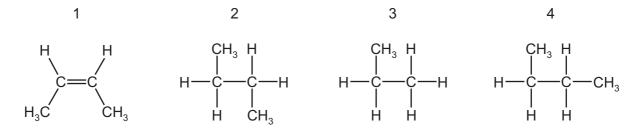
What are the sources of the nitrogen and hydrogen used in the Haber process?

	nitrogen	hydrogen
Α	fertilisers	reacting methane with steam
В	fertilisers	the air
С	the air	reacting methane with steam
D	the air	the air

- **32** Which process does **not** produce carbon dioxide?
 - A combustion of alkanes
 - **B** photosynthesis
 - **C** respiration
 - **D** thermal decomposition of limestone

33 Which row shows the conditions used in the manufacture of sulfuric acid by the Contact process?

	temperature /°C	pressure /atm	catalyst
Α	40	200	Fe
В	40	200	V_2O_5
С	400	2	Fe
D	400	2	V_2O_5


34 Some marble chips (calcium carbonate) are heated strongly and substances X and Y are formed.

Substance X is a white solid that reacts with water, giving out heat. Substance Y is a colourless gas.

What are substances X and Y?

	Х	Y
Α	calcium chloride	oxygen
В	calcium hydroxide	carbon dioxide
С	calcium oxide	carbon dioxide
D	calcium sulfate	oxygen

35 The structures of some organic molecules are shown.

Which structures represent an alkane with four carbon atoms?

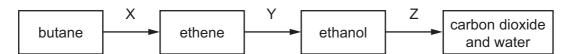
- A 1 only
- **B** 2 and 3
- **C** 2 and 4
- **D** 3 and 4

36 Some of the fractions obtained from the fractional distillation of petroleum are used as fuels for vehicles.

Which two fractions are used as fuels for vehicles?

- **A** bitumen fraction and gasoline fraction
- **B** bitumen fraction and naphtha fraction
- **C** gasoline fraction and kerosene fraction
- **D** kerosene fraction and lubricating fraction
- **37** X, Y and Z are three hydrocarbons.

X CH₂=CH₂

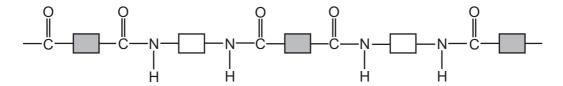

Y CH₃-CH=CH₂

Z CH₃-CH₂-CH=CH₂

What do compounds X, Y and Z have in common?

- 1 They are all alkenes.
- 2 They are all part of the same homologous series.
- 3 They all have the same boiling point.
- **A** 1, 2 and 3
- **B** 1 and 2 only
- C 1 and 3 only
- **D** 2 and 3 only

38 The diagram shows a reaction sequence.



Which row names the processes X, Y and Z?

	Х	Y	Z
Α	cracking	fermentation	respiration
В	cracking	hydration	combustion
С	distillation	fermentation	respiration
D	distillation	hydration	combustion

- 39 Which pair of compounds can be used to prepare CH₃CH₂COOCH₂CH₃?
 - A ethanoic acid and ethanol
 - B ethanoic acid and propanol
 - C propanoic acid and ethanol
 - **D** propanoic acid and propanol

40 The structure of a synthetic polymer is shown.

The structure shows that it is a1...... . It is formed by2...... polymerisation.

Which words complete gaps 1 and 2?

	1	2
Α	polyamide	addition
В	polyamide	condensation
С	polyester	addition
D	polyester	condensation

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

The Periodic Table of Elements

Group																	
1	П						III	IV	V	VI	VII	VIII					
'	"											""	1 0	V	VI	V 11	
	1 H														2		
							hydrogen										He helium
Key							1 1										4
3	4	atomic number						_				5	6	7	8	9	10
Li	Be		ato	mic sym	bol							В	С	N	0	F	Ne
lithium	beryllium			name								boron	carbon	nitrogen	oxygen	fluorine	neon
7	9		rela	ative atomic m	ass							11	12	14	16	19	20
11	12											13	14	15	16	17	18
Na	Mg											Αl	Si	Р	S	Cl	Ar
sodium 23	magnesium 24											aluminium 27	silicon 28	phosphorus 31	sulfur 32	chlorine 35.5	argon 40
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
potassium	calcium	scandium	titanium	vanadium	chromium	manganese	iron	cobalt	nickel	copper	zinc	gallium	germanium	arsenic	selenium	bromine	krypton
39	40	45	48	51	52	55	56	59	59	64	65	70	73	75	79	80	84
37	38	39 V	40	41	42	43	44	45	46	47	48	49 •	50	51	52	53 •	54
Rb	Sr	1	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
rubidium 85	strontium 88	yttrium 89	zirconium 91	niobium 93	molybdenum 96	technetium -	ruthenium 101	rhodium 103	palladium 106	silver 108	cadmium 112	indium 115	tin 119	antimony 122	tellurium 128	iodine 127	xenon 131
55	56	57–71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ва	lanthanoids	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	T1	Pb	Bi	Po	At	Rn
caesium	barium		hafnium	tantalum	tungsten	rhenium	osmium	iridium	platinum	gold	mercury	thallium	lead	bismuth	polonium	astatine	radon
133	137		178	181	184	186	190	192	195	197	201	204	207	209	-	_	-
87	88	89–103	104	105	106	107	108	109	110	111	112		114		116		
Fr	Ra	actinoids	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn		F1		Lv		
francium —	radium —		rutherfordium —	dubnium —	seaborgium -	bohrium —	hassium —	meitnerium —	darmstadtium –	roentgenium -	copernicium —		flerovium —		livermorium —		
	L																

	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
lanthanoids	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
	lanthanum 139	cerium 140	praseodymium 141	neodymium 144	promethium —	samarium 150	europium 152	gadolinium 157	terbium 159	dysprosium 163	holmium 165	erbium 167	thulium 169	ytterbium 173	lutetium 175
	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
actinoids	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium	lawrencium
	_	232	231	238	-	_	_	-	_	_	_	_	_	_	_

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).