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1 Use the method of differences to find

nÐ
r=1

1

�2r�2 − 1
. [4]

Deduce the value of

∞Ð
r=1

1

�2r�2 − 1
. [1]

2 Find the cubic equation with roots !, " and ' such that
! + " + ' = 3,

!2 + "2 + '2 = 1,

!3 + "3 + '3 = −30,
giving your answer in the form x3 + px2 + qx + r = 0, where p, q and r are integers to be found. [6]

3 Find a matrix A whose eigenvalues are −1, 1, 2 and for which corresponding eigenvectors are

`
1

0

0

a
,

`
1

1

0

a
,

`
0

1

1

a
,

respectively. [7]

4 Using factorials, show that

@
n

r − 1

A
+
@
n

r

A
=
@
n + 1

r

A
. [2]

Hence prove by mathematical induction that

�a + x�n =
@
n

0

A
an +

@
n

1

A
an−1x +à +

@
n

r

A
an−rxr +à +

@
n

n

A
xn

for every positive integer n. [4]

5 The linear transformation T : >4 → >4 is represented by the matrix A, where

A =
�
1 3 5 7

2 8 7 9

3 13 9 11

6 24 21 27

�

.

Find

(i) the rank of A, [3]

(ii) a basis for the range space of T, [1]

(iii) a basis for the null space of T. [4]
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6 Find the general solution of the differential equation

d2x

dt2
+ 7

dx

dt
+ 10x = 116 sin 2t. [8]

State an approximate solution for large positive values of t. [1]

7 The curve C has equation y = e−2x. Find, giving your answers correct to 3 significant figures,

(i) the mean value of
dy

dx
over the interval 0 ≤ x ≤ 2, [2]

(ii) the coordinates of the centroid of the region bounded by C, x = 0, x = 2 and y = 0. [9]

8 A curve C has equation x2 + 4xy − y2 + 20 = 0. Show that, at stationary points on C, x = −2y. [3]

Find the coordinates of the stationary points onC, and determine their nature by considering the value

of
d2y

dx2
at the stationary points. [8]

9 Evaluate Ó
1
2
0

0

x sin x dx. [2]

Given that I
n
= Ó

1
2
0

0

xn sin x dx, prove that, for n > 1,

I
n
= n

�
1
2
0�n−1 − n�n − 1�I

n−2. [4]

By first using the substitution x = cos−1u, find the value of

Ó 1

0

�
cos−1u�3 du,

giving your answer in an exact form. [5]

10 Let z = cos1 + i sin 1. Show that

zn + 1

zn
= 2 cos n1 and zn − 1

zn
= 2i sin n1. [2]

By considering

@
z − 1

z

A4 @
z + 1

z

A2
, show that

sin41 cos21 = 1
32
�cos 61 − 2 cos 41 − cos 21 + 2�. [7]

Hence find the exact value of Ó
1
4
0

0

sin41 cos21 d1. [3]

[Question 11 is printed on the next page.]
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11 Answer only one of the following two alternatives.

EITHER

The lines l
1
and l

2
have equations

r = 6i − 3j + s�3i − 4j − 2k� and r = 2i − j − 4k + t�i − 3j − k�

respectively. The point P on l
1
and the point Q on l

2
are such that PQ is perpendicular to both l

1
and

l
2
. Show that the position vector of P is 3i + j + 2k and find the position vector of Q. [7]

Find, in the form r = a + ,b + -c, an equation of the plane � which passes through P and is

perpendicular to l
1
. [3]

The plane � meets the plane r = pi + qj in the line l
3
. Find a vector equation of l

3
. [4]

OR

A curve C has parametric equations

x = 1 − 3t2, y = t�1 − 3t2�, for 0 ≤ t ≤ 1

ï3 .

Show that

@
dx

dt

A2
+
@
dy

dt

A2
= �

1 + 9t2
�2
. [2]

Hence find

(i) the arc length of C, [2]

(ii) the surface area generated when C is rotated through 20 radians about the x-axis. [3]

Use the fact that t = y

x
to find a cartesian equation of C. Hence show that the polar equation of C is

r = sec 1�1 − 3 tan21�, and state the domain of 1. [4]

Find the area of the region enclosed between C and the initial line. [3]
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