Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level | CANDIDATE
NAME | | | | |-------------------|----------------------------|---------------------|--------------------| | CENTRE
NUMBER | | CANDIDATE
NUMBER | | | CHEMISTRY | | | 9701/43 | | Paper 4 A Leve | Structured Questions | Oct | ober/November 2016 | | | | | 2 hours | | Candidates ans | wer on the Question Paper. | | | ## **READ THESE INSTRUCTIONS FIRST** Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen. You may use an HB pencil for any diagrams or graphs. **Data Booklet** Do not use staples, paper clips, glue or correction fluid. DO **NOT** WRITE IN ANY BARCODES. Answer **all** questions. Additional Materials: Electronic calculators may be used. You may lose marks if you do not show your working or if you do not use appropriate units. A Data Booklet is provided. At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question. Answer **all** the questions in the spaces provided. 1 | Coppe | er is a transition element and has atomic num | ber 29. | |---------------|---|---| | | omplete the electronic configuration for the copate. | oper atom and the copper ion in the +2 oxidation | | | copper atom | [Ar] | | | • copper ion in the +2 oxidation state | [Ar][2] | | (b) Ti | ne following equilibrium exists between two co | omplex ions of copper in the +2 oxidation state. | | | $[Cu(H2O)6]2+ + 4Cl- \rightleftharpoons [$ | $CuCl_4]^{2-} + 6H_2O$ | | (i) | Name the <i>type of reaction</i> occurring here. | | | | | [1] | | (ii) | State the colours of these two complex ion | S. | | | [Cu(H ₂ O) ₆] ²⁺ | . [CuC <i>l</i> ₄] ²⁻ [1] | | (iii) | State the shape of the $[CuCl_4]^{2-}$ ion. | | | | | [1] | | (iv) | Write the expression for the stability consta | ant, K_{stab} , for this equilibrium. | | | K _{stab} = | | | | | [1] | | | opper also forms the complex ions [Cu(NH $_3$) $_2$ dentate ligand ethane-1,2-diamine, H $_2$ NCH $_2$ C | $(H_2O)_4]^{2+}$ and $[Cu(en)(H_2O)_4]^{2+}$ where <i>en</i> is the | | | $[Cu(H2O)6]2+ + 2NH3 \rightleftharpoons [Cu(N)$ | $(H_3)_2(H_2O)_4]^{2+} + 2H_2O$ equilibrium 1 | | | $[Cu(H_2O)_6]^{2+} + en \rightleftharpoons [Cu(e)^{-1}]^{2+}$ | $n)(H_2O)_4]^{2+} + 2H_2O$ equilibrium 2 | | (i) | What is meant by the term bidentate ligand | ! ? | | | | [2] | | | | | (ii) The table lists the values of stability constants for these two complexes. | | stability constant, $K_{\rm stab}$ | |--|------------------------------------| | $[Cu(NH_3)_2(H_2O)_4]^{2+}$ | 7.94×10^{7} | | [Cu(en)(H ₂ O) ₄] ²⁺ | 3.98×10^{10} | | | | What do these K_{stab} values tell us about the relative positions of equilibria 1 and 2? | | |-----|------------|---|------| | | | | | | (d) | Nic
ato | kel forms the complex ion $[Ni(en)_3]^{2+}$ in which it is surrounded octahedrally by six nitroms. | gen | | | (i) | Name the type of stereoisomerism displayed by $[Ni(en)_3]^{2+}$. | | | | (ii) | Draw three-dimensional diagrams to show the two stereoisomers of $[Ni(en)_3]^{2+}$. | [1] | [3] | | (e) | Eth | ane-1,2-diamine is a useful reagent in organic chemistry. | | | | (i) | Explain how the amino groups in ethane-1,2-diamine allow the molecule to act a Brønsted-Lowry base. | is a | | | | | | | | | | | | | (ii) | Write an equation for the reaction of ethane-1,2-diamine with an excess hydrochloric acid. | 01 | | (f) | (i) | Under certain conditions, ethane-1,2-diamine reacts with ethanedioic acid, HO_2CCO_2H , to form the polymer ${\bf Z}$. | |-----|-------|---| | | | Draw the structure of this polymer, Z , showing two repeat units. | | | | | | | | | | | | | | | | [2] | | | (ii) | Name the <i>type of reaction</i> occurring during this polymerisation. | | | | [1] | | | (iii) | Polymer Z is an example of a biodegradable polymer. | | | | Name a polymer that is non-biodegradable. | | | | [1] | | | | [Total: 20] | | | | | | 2 | (a) | When copper(II) carbonate is heated strongly, it decomposes in a similar way to Group 2 carbonates. | |---|-----|---| | | | Predict what would be observed when anhydrous copper(II) carbonate is heated. | | | | [1] | | | (b) | Describe and explain how the thermal stability of the Group 2 carbonates varies down the group. | | | | | | | | [3] | | | (c) | Calcium cyanamide, CaCN ₂ , can be used as a fertiliser. | | | | (i) Complete the 'dot-and-cross' diagram for the cyanamide ion, CN_2^{2-} . | | | | Use the following key for the electrons. electrons from carbon electrons from nitrogen added electron(s) responsible for the overall negative charge | | | | N C N | | | | [2] | | | | (ii) CaCN ₂ decomposes readily on contact with water forming an insoluble white solid and ammonia only. | | | | Suggest an equation for this reaction. | | | | [2] | | | | [Total: 8] | | 3 | The spontaneity (feasibility) of a chemical reaction depends on the standard Gibbs free energy | |---|--| | | change, ΔG° . This is related to the standard enthalpy and entropy changes by the equation shown. | | | | | $\Delta G^{\circ} = \Delta H$ | J° – T∆S° | | | | | | | | | |---------------|--|--|-------------------------------|----------------------------|---------------------------|--------------------------|--|--|--|--|--|--| | | ate and explain whether the following processes will lead to an increase or decrease in tropy. | | | | | | | | | | | | | (i) | the rea | the reaction of magnesium with hydrochloric acid | | | | | | | | | | | | | entrop | entropy change | | | | | | | | | | | | | explar | nation | | | | | | | | | | | | (ii) | solid p | otassium chlorid | le dissolving in v | water | | [1] | | | | | | | | | entrop | y change | | | | | | | | | | | | | explar | nation | | | | | | | | | | | | (iii) | | condensing to w | | | | [1] | | | | | | | | , | | | | | | | | | | | | | | | · | | | | | | | | | | | | | | САРІСІ | | | | | [1] | | | | | | | | (b) Ma | agnesiur | n carbonate can | be decomposed | d. | | | | | | | | | | | | N | $MgCO_3(s) \rightarrow M$ | gO(s) + CO ₂ (g | g) $\Delta H^{\circ} = +$ | 117 kJ mol ⁻¹ | | | | | | | | St | andard e | entropies are sho | wn in the table. | | | | | | | | | | | | | substance | MgCO ₃ (s) | MgO(s) | CO ₂ (g) |] | | | | | | | | | | S ^e /Jmol ⁻¹ K ⁻¹ | +65.7 | +26.9 | +214 | | | | | | | | | (i) | | ate ∆G° for this i
e a relevant sign | | | significant figu | res. | | | | | | | | /:: \ | Evaloi | n with reference | o to ACe why | | | kJ mol ⁻¹ [3] | | | | | | | | (ii) | - | ratures. | e ιο Δe, why | uns reaction | DECOMES 111016 | e feasible at higher | | | | | | | | (c) | On heating, sodium hydrogencarbonate decomposes into sodium carbonate as shown. | |-----|--| | | $2NaHCO_{3}(s) \rightarrow Na_{2}CO_{3}(s) + CO_{2}(g) + H_{2}O(g) \qquad \Delta H^{\circ} = +130 kJ mol^{-1} \\ \Delta S^{\circ} = +316 J mol^{-1} K^{-1}$ | | | Calculate the minimum temperature at which this reaction becomes spontaneous (feasible) Show your working. | | | | | | | | | | | | | | | temperature = K [2] | | (d) | The solubility of Group 2 sulfates decreases down the Group. | | | Explain this trend. | | | | | | | | | | | | [2] | | | [Total: 11] | | [1] | |-----| | | | | | | | | | | | | | | | [0] | | [2] | | | | | | [2] | | [4] | | | | | | | | (d) | An electrochemical cell was set up to measure the standard electrode potential, $E_{\rm cell}^{\circ}$, | of a cel | |-----|--|----------| | | made of a Co ²⁺ /Co half-cell and a Fe ³⁺ /Fe ²⁺ half-cell. | | | (i) | Complete | the | table | with | the | substance | used | to | make | the | electrode | in | each | of | these | |-----|-------------|-----|-------|------|-----|-----------|------|----|------|-----|-----------|----|------|----|-------| | | half-cells. | | | | | | | | | | | | | | | | half-cell | electrode | |------------------------------------|-----------| | Co ²⁺ /Co | | | Fe ³⁺ /Fe ²⁺ | | [1] (ii) Write the equation for the overall cell reaction.[1] (iii) Use the *Data Booklet* to calculate the $E_{\text{cell}}^{\bullet}$ $$E_{\text{cell}}^{\bullet} = \dots V [1]$$ (e) The electrochemical cell in (d) was set up again but this time the concentration of Co²⁺(aq) was 0.050 mol dm⁻³. The Nernst equation can be used to calculate the value of an electrode potential at different concentrations. $$E = E^{\circ} + (0.059/z) \log [Co^{2+}(aq)]$$ Nernst equation (i) Use the *Data Booklet* and the Nernst equation to calculate the value of E for the Co^{2+}/Co half-cell in this experiment. $$E \text{ for } Co^{2+}/Co = \dots V [1]$$ (ii) Suggest how this change will affect the overall cell potential, E_{cell} , compared to E_{cell}^{e} in (d)(iii). Circle your answer. less positive no change more positive [1] **(f)** Iron(III) ions can oxidise vanadium metal. Construct an equation for the reaction of an excess of iron(III) ions with vanadium metal. Use of the *Data Booklet* will be helpful.[2] [Total: 14] | 5 | Compound F contains the elements carbon, hydrogen and oxygen only. All carbon-carbon bonds | |---|---| | | in F are single bonds. The structure of F was analysed by mass spectrometry and infra-red and | | | NMR spectroscopy. | | (a) | The mass | spectrum | shows | that the | m/e | value for | or the M | peak is 9 | 0. | |-----|----------|----------|-------|----------|-----|-----------|----------|-----------|----| |-----|----------|----------|-------|----------|-----|-----------|----------|-----------|----| The ratio of the heights of the M and M+1 peaks is 22.1:0.7. (i) Use the ratio of the heights of the M and M+1 peaks to calculate the number of carbon atoms in a molecule of **F**. number of carbon atoms = [2] (ii) Suggest the molecular formula of **F**. molecular formula = C H O [1] **(b)** The infra-red spectrum of **F** was obtained. Use the *Data Booklet* and your knowledge of infra-red spectroscopy to identify the type of bond and the functional group responsible for these **three** absorptions. | absorption/cm ⁻¹ | appearance of the peak | type of bond | functional group | |-----------------------------|------------------------|--------------|------------------| | 3350 | broad and strong | | | | 2680 | very broad and strong | | | | 1725 | strong | | | [2] (c) **F** was dissolved in deuterated trichloromethane, $CDCl_3$, and the proton NMR spectrum of this solution obtained. (i) Use the *Data Booklet* and your answer to (a)(ii) to complete Table 1 for the proton NMR spectrum of **F**. The actual chemical shifts for the four absorptions in **F** have been added for you. Table 1 | δ/ppm | type of proton | relative peak area | |-------|----------------|--------------------| | 1.4 | | | | 3.9 | | | | 4.7 | | | | 12.9 | | | | - | M. | |-----|----| | - 1 | _ | | (ii) | Describe and explain the splitting pattern for the absorption at δ = 1.4. | | |------|--|----| | | | | | | | [1 | (iii) ${\bf F}$ was dissolved in ${\bf D}_2{\bf O}$ and the proton NMR spectrum of this new solution obtained. Two of the absorptions in Table 1 were not present in this spectrum. Which absorptions were **not** present? and [1] (iv) Suggest the structure of **F**. [1] - (d) Molecules of cycloheptadiene, C_7H_{10} , consist of a seven-membered ring with two carbon-carbon double bonds. - (i) Complete the skeletal formulae of two isomers of cycloheptadiene. [1] The isomers **P** and **Q** were analysed using carbon-13 NMR spectroscopy. (ii) Predict the number of peaks that will be seen in the carbon-13 NMR spectra of P and Q. | isomer | r number of peaks | | |--------|-------------------|--| | Р | | | | Q | | | [2] [Total: 15] Question 6 starts on the next page. 6 Ibuprofen and paracetamol are pain-relief drugs. (a) Ibuprofen and paracetamol both contain the aryl (benzene) functional group. [2] [2] (b) Ibuprofen contains a chiral centre and shows stereoisomerism. | (i) | State what is meant by the term <i>chiral centre</i> . | | | | |-----|--|-----|--|--| | | | | | | | | | | | | | | | 113 | | | (ii) Draw the two stereoisomers of ibuprofen. | (c) | Draw the structu with LiA <i>l</i> H ₄ . | res of the organ | ic products whe | n ibuprofen and par | acetamol react sepai | ately | |-----|--|--------------------|-------------------|---------------------------|------------------------------|-------| | | | | | | | | | | product v | vith ibuprofen | | product with p | paracetamol | [2] | | (d) | A student carrier reagents D and (✓ means a rea | E and the follow | ing results were | | n and paracetamol | using | | | | reagent | ibuprofen | paracetamol | | | | | | D | ✓ | X | | | | | | E | X | ✓ | | | | | (i) Suggest a p | ossible identity | for each reagent | t D and E . | | | | | D | | | | | | | | E | | | | | | | | | | | | | [2] | | | (ii) Give the str | ucture of the org | anic product for | med when reagent | D reacted with ibupro | ofen. | 1 (20 2) | | | | | | | <u> </u> | roduct with ibup | roten | | [1] | | (| iii) Give the stru | ucture of the orga | anic product form | ned when reagent E | reacted with paraceta | amol. | andread a 20 | | | | | | | pro | oduct with parac | etamoi | | [1] | (e) One of the steps in the manufacture of ibuprofen is shown. | (1) | write an equation for the reaction between CH_3COCI and $AICI_3$. | | |-----|--|----| | | | [1 | (ii) Complete the mechanism for the conversion of **X** into **Y**. Include all necessary curly arrows, any relevant dipoles and charges. | | | [3] | |------|-----------------------------|-------| | iii) | Name the mechanism in (ii). | | | | | . [1] | | | [Total | : 16] | Question 7 starts on the next page. - 7 (a) Sodium chlorate(I), NaClO, is the active ingredient in commercial bleach. The concentration of chlorate(I) ions was determined by titration. - 10.0 cm³ of a bleach solution was diluted to 250 cm³ in a volumetric flask using distilled water. - Dilute sulfuric acid and an excess of potassium iodide solution were added to a 25.0 cm³ portion of this solution to liberate iodine. - The resulting solution required 20.80 cm³ of 0.100 mol dm⁻³ aqueous sodium thiosulfate solution to react with the iodine produced. The titration reactions are shown. $$ClO^{-} + 2I^{-} + 2H^{+} \rightarrow I_{2} + Cl^{-} + H_{2}O$$ $I_{2} + 2S_{2}O_{3}^{2-} \rightarrow 2I^{-} + S_{4}O_{6}^{2-}$ Calculate the concentration, in mol dm⁻³, of ClO⁻ ions in the bleach solution. | | | concentration of $ClO^- = \dots moldm^{-3}$ | [3] | |-----|-------|--|-----| | (b) | An | indicator was used in the thiosulfate-iodine titration. | | | | (i) | Name a suitable indicator for this titration. | | | | | | [1] | | | (ii) | State the expected colour change you would observe at the end-point in this titration. | | | | | from to | [1] | | | (iii) | State when in the procedure you would add the indicator. | | | | | | | | | | | [1] | (c) The concentration of chlorate(I) ions can also be determined by adding an excess of hydrogen peroxide to the sample of bleach and measuring the volume of oxygen gas produced. When an excess of aqueous hydrogen peroxide was added to 5.0 cm³ of a different bleach solution, 82 cm³ of oxygen was produced at room temperature and pressure. Calculate the concentration of ClO^- ions in this bleach solution. concentration of $$ClO^- = \dots mol dm^{-3}$$ [2] (d) Trichlorocyanuric acid, $C_3Cl_3N_3O_3$, acts as a chlorine buffer and disinfectant for swimming pools. It reacts with water to give chloric(I) acid, HClO. $$C_3Cl_3N_3O_3 + 3H_2O \rightleftharpoons C_3H_3N_3O_3 + 3HClO$$ (i) Write the expression for K_c for this equilibrium. [1] (ii) In outdoor swimming pools, the HClO is decomposed by sunlight. The decomposition of HClO is a redox reaction which forms a gas that relights a glowing splint. Describe and explain the effect of the decomposition of HClO on the equilibrium in (d). State the effect on K_c . effect on $K_{\rm c}$ [2] | | (iii) | The decomposition of HC1O is a redox reaction. | |-----|-------|---| | | | Suggest an equation for this reaction. | | | | [1] | | (e) | | buffer solution in blood is a mixture of carbonic acid, H_2CO_3 , and hydrogencarbonate ions, O_3^- . Healthy blood has a pH of 7.40. | | | | $H_2CO_3 + H_2O \implies HCO_3^- + H_3O^+ \qquad K_a = 7.94 \times 10^{-7} \text{mol dm}^{-3}$ | | | (i) | Explain how this buffer system acts to control the blood pH. Include equations in your answer. | | | | | | | | | | | | | | | | [2] | | | (ii) | A patient's blood has a [HCO ₃ ⁻]:[H ₂ CO ₃] ratio of 9.5:1. | | | | Calculate the pH of the patient's blood. | | | | | | | | | pH =[2] [Total: 16] Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the line available to acknowledgements. Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.