Cambridge International AS and A Level Mathematics

9709

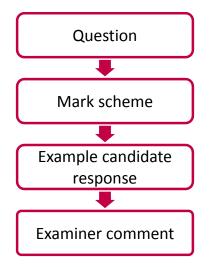
Paper 7

Cambridge Advanced

Cambridge International Examinations retains the copyright on all its publications. Registered Centres are permitted to copy material from this booklet for their own internal use. However, we cannot give permission to Centres to photocopy any material that is acknowledged to a third party even for internal use within a Centre.

 $\ensuremath{\mathbb{C}}$ Cambridge International Examinations 2015 Version 1.0

Contents


Introduction	2
Assessment at a glance	3
Paper 7	5

Introduction

The main aim of this booklet is to exemplify standards for those teaching Cambridge International AS & A Level Mathematics (9709), and to show how different levels of candidates' performance relate to the subject's curriculum and assessment objectives.

In this booklet candidate responses have been chosen to exemplify a range of answers. Each response is accompanied by a brief commentary explaining the strengths and weaknesses of the answers.

For ease of reference the following format for each component has been adopted:

Each question is followed by an extract of the mark scheme used by examiners. This, in turn, is followed by examples of marked candidate responses, each with an examiner comment on performance. Comments are given to indicate where and why marks were awarded, and how additional marks could have been obtained. In this way, it is possible to understand what candidates have done to gain their marks and what they still have to do to improve them.

Past papers, Examiner Reports and other teacher support materials are available on Teacher Support at <u>https://teachers.cie.org.uk</u>

Assessment at a glance

The 7 units in the scheme cover the following subject areas:

- Pure Mathematics (units P1, P2 and P3);
- Mechanics (units M1 and M2);
- Probability and Statistics (units S1 and S2).

Centres and candidates may:

- take all four Advanced (A) Level components in the same examination session for the full A Level.
- follow a staged assessment route to the A Level by taking two Advanced Subsidiary (AS) papers (P1 & M1 or P1 & S1) in an earlier examination session;
- take the Advanced Subsidiary (AS) qualification only.

AS Level candidates take:

Paper 1: Pure Mathematics 1 (P1)

1¾ hours

About 10 shorter and longer questions 75 marks weighted at 60% of total

plus one of the following papers:

Paper 2: Pure Mathematics 2 (P2)	Paper 4: Mechanics 1 (M1)	Paper 6: Probability and Statistics (S1)
1¼ hours	1¼ hours	1¼ hours
About 7 shorter and longer	About 7 shorter and longer	About 7 shorter and longer
questions	questions	questions
50 marks weighted at 40%	50 marks weighted at 40%	50 marks weighted at 40%
of total	of total	of total

A Level candidates take:

Paper 1: Pure Mathematics 1 (P1)	Paper 3 Pure Mathematics 3 (P3)
1¾ hours	1¾ hours
About 10 shorter and longer questions	About 10 shorter and longer questions
75 marks weighted at 30% of total	75 marks weighted at 30% of total

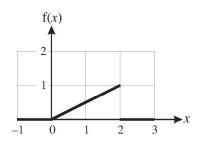
plus **one** of the following combinations of two papers:

Paper 4: Mechanics 1 (M1)	Paper 6: Probability and Statistics 1 (S1)
1¼ hours	1¼ hours
About 7 shorter and longer questions	About 7 shorter and longer questions
50 marks weighted at 20% of total	50 marks weighted at 20% of total

or

Paper 4: Mechanics 1 (M1)	Paper 5: Mechanics 2 (M2)	
1¼ hours	1¼ hours	
About 7 shorter and longer questions	About 7 shorter and longer questions	
50 marks weighted at 20% of total	50 marks weighted at 20% of total	

or


Paper 6: Probability and Statistics 1 (S1)	Paper 7: Probability and Statistics 2 (S2)	
1¼ hours	1¼ hours	
About 7 shorter and longer questions	About 7 shorter and longer questions	
50 marks weighted at 20% of total	50 marks weighted at 20% of total	

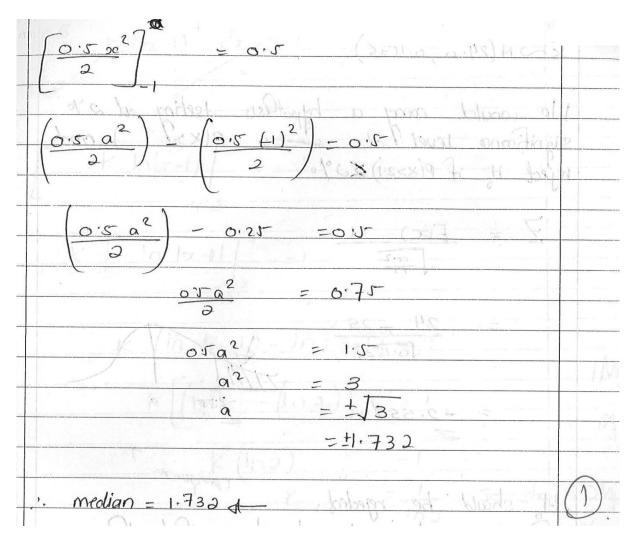
Teachers are reminded that the latest syllabus is available on our public website at **www.cie.org.uk** and Teacher Support at **https://teachers.cie.org.uk**

Paper 7

Question 1

The diagram shows the graph of the probability density function, f, of a random variable X. Find the median of X. [3]

Mark scheme


1	$\left(\frac{m}{2}\right)^2$	M1		$y = \frac{1}{2}x$ (attempt at linear equ with $c = 0$)
	$\left(\frac{m}{2}\right)^2 = \frac{1}{2}$	M1		$\int_0^m (\frac{1}{2}x) \mathrm{d}x = \frac{1}{2}$
	$m = \sqrt{2}$ or 1.41 (3 sfs)	A1	[3]	(Note: $\pm \sqrt{2}$ as final answer scores A0)

224 05252 otherwise 0 • Median = 0 -a =0.5 2mgan VICHOMMA 0 MI 9 27 M -0.5 2n th Hom 2 Dazia = 0.5 2 Ja2. =0.5 A 2a2 = 1 212 α^2 = 0,707 a 2 A 12 12 t ine -0 2 =2 grad 1-0 line Dequation 4-2 21-1 P 4. y=2n-1+2=2n+)

Total mark awarded = 2 out of 3

Cradient : J2 - 91 P 207-20 fa) dx. 1. Jo 000 1-0 2-0 2. .f(x)dx 0 =0.5 X 2 = 10 y - 2 20-2 f60): 0.5 0.7(2-2) = 4-1 05x-1 = 4-1 y-1= 0.5x-1 difficit nonastro 4 = 0.5x 02 f(c) dx =0.5 -1 n@2 dx 0.50 2005 MO 02 0.522 0:5 2

Example candidate response - 2, continued

Total mark awarded = 1 out of 3

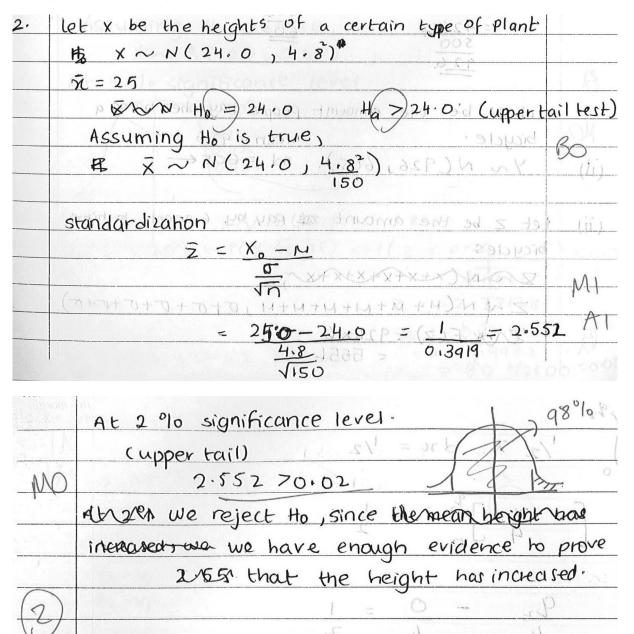
Examiner comment - 1 and 2

Both of the candidates realised the need to find the equation of the straight line between 0 and 2, and both candidates found an equation of the correct form (y = mx).

In order to find the median, it was then necessary to integrate from 0 to 'm' and set this equal to 0.5. Candidate 1 did this correctly and would have gained full marks for the question if their equation of the line had been correct.

Candidate 2 was unable to apply their knowledge to this particular question and made the error of integrating the probability density function from -1 to '*m*' and consequently did not gain the method mark for this step of the process.

Question 2


2 The heights of a certain type of plant have a normal distribution. When the plants are grown without fertilizer, the population mean and standard deviation are 24.0 cm and 4.8 cm respectively. A gardener wishes to test, at the 2% significance level, whether Hiergro fertilizer will increase the mean height. He treats 150 randomly chosen plants with Hiergro and finds that their mean height is 25.0 cm. Assuming that the standard deviation of the heights of plants treated with Hiergro is still 4.8 cm, carry out the test.

Mark scheme

2	H ₀ : Pop mean = 24.0 H ₁ : Pop mean > 24.0	B1	Allow ' μ ' but not just 'mean'
	$\frac{25-24}{\frac{4.8}{\sqrt{150}}}$	M1	Standardise, with √ 150. Ignore cc. Accept sd/var mixes. OR find x _{crit}
	= 2.55(2) Comp z = 2.054 or 2.055 Evidence that Hiergro has incr hts	A1 M1 A1ft [5]	For correct z or area or x_{crit} Valid comparison (z values/areas/x values) Correct conclusion No contradictions (Note 2 tail test can score B0 M1 A1 M1 (z = 2.326) A1ft)

Q.	let the be the random variable of the heights
	of a certain types of plant.
Only	M. A (24.0, 4.82)
sheld s	test the information registed in the spaces above. () 100 - 061 - 061 - 061
	M/ M ~N (24.0, 4.52)
	150
	Ho: M= 27525024,0
01	M. : M> 250. 24.0
-13-	additional susver sheetlas 8 - 8 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
1	1F Ho is true, X~H (24.0, 4.82)
	150/
	use use a upper tail test at 2% Significance
	level.
	100% - 2% = 98%
	= 0.98
1	ATOT = 2.055
	Z = X-M (FREISHIDHUX GD
· ·	The second
	Z = 25-24 /SWIX 2 : NOOM
	4.8 M
	V150
	Z = 2.552 acx = 2000 pv 2
	OOIPE NO COMP. NI
	ce the test statistic is 2.552, it falls mo
in	the rejection area therefore we reject H= No
10	favour of H. R
1 6300	G

Total mark awarded = 3 out of 5

Total mark awarded = 2 out of 5

Examiner comment - 1 and 2

Both candidates attempted to define the null and alternative hypotheses. Candidate 1 did this correctly using " μ " to signify the population mean. Candidate 2 wrote that $H_0 = 24$ and $H_1 > 24$ without reference to the population mean, and thus did not gain the mark available.

The calculation of the *z* value was done correctly by both candidates.

Candidate 1 did not then show their comparison, and although the correct conclusion was reached it was not justified. It is important that either the inequality (e.g. 2.552 > 2.054 or equivalent for area comparisons) is stated, or the two points are shown on a clearly labelled normal distribution diagram, so that the conclusion reached is fully justified.

Candidate 2 was unable to gain any marks for their comparison as it was not valid; the candidate compared a *z* value with an area.

Question 3

- **3** The cost of hiring a bicycle consists of a fixed charge of 500 cents together with a charge of 3 cents per minute. The number of minutes for which people hire a bicycle has mean 142 and standard deviation 35.
 - (i) Find the mean and standard deviation of the amount people pay when hiring a bicycle. [3]
 - (ii) 6 people hire bicycles independently. Find the mean and standard deviation of the total amount paid by all 6 people.[3]

M	lar	k	sc	:h	er	ne
1.4	u	IX.	90			

3 (i	Mean = $500 + 3 \times 142$ = 926 (cents)	B1	
	$SD = 3 \times 35$ = 105 (cents)	M1 A1 [3]	Or 9×35^2 seen Accept $\sqrt{11025}$
(i	i) Mean = $6 \times `926' = 5556$ (cents) $6 \times `105'^2$ (= 66150) (SD = $\sqrt{66150}$) = 257 (cents) (3 sf)	B1ft M1 A1 [3]	or SD = $\sqrt{6} \times 105^{\circ}$. ft their (i) Accept $\sqrt{66150}$

Est 10 500 C + BCXX mon with and 500 + 32 0 number Ter, a let. 2 be Canadari Z~N(142,352 Mean 500 + 3d E(500) + E(32 E(z)500 + 3 E(x) C. CENEWER k 500 + 3 (142 (=25 926 MORDON. Var (2) = 9 Var (2 Var (500 VULLE 126 10 Dio VONZ Var (2) = 9 (1025 M Var(z)= 11,025 12X V11025 105 -UI Co.o. -to FIRMA CII) 6 people hire independently be drive 6 people hire bicycles let. V R = 6 E(z)ECr Var(r) 6 Var (2) 2 5,556 630 WX105

Item marks awarded: (i) = 3/3; (ii) = 1/3

Total mark awarded = 4 out of 6

3	(1) mean = 500+ 3×142	1. Oly
\sim	= 926	
	(and sint and the poligon of - (2000 - Togod).	BL
141	$SP = 500 + (3^{3} \times 35)$,
	= 60S	Mo
ίì)	Uback the " proproching thicycro"	
	XIADA	
	Mech= 6x926	RI
	≥ SSS6 /	
	10(0-1)-103-005198	
	$s'p = 6^2 \times 605$	Mo
	- 21780	

Item marks awarded: (i) = 1/3; (ii) = 1/3

Total mark awarded = 2 out of 6

Examiner comment – 1 and 2

(i) Both candidates 1 and 2 were able to correctly find the mean.

To find the standard deviation the correct calculation was performed by candidate 1, but candidate 2, incorrectly, added 500.

(ii) Again, both candidates 1 and 2 correctly found the mean, but neither found the correct variance.

Candidate 1 calculated $6\times$ standard deviation rather than $6\times$ variance (it may have been their intention to calculate $6\times$ variance, but unfortunately this was not what the candidate actually did). Candidate 2 was not clear about what was required and calculated $6^{2}\times$ their standard deviation.

Paper 7

Question 4

4 A cereal manufacturer claims that 25% of cereal packets contain a free gift. Lola suspects that the true proportion is less than 25%. In order to test the manufacturer's claim at the 5% significance level, she checks a random sample of 20 packets.

(i) Find the critical region for the test.	[5]
--	-----

(ii) Hence find the probability of a Type I error. [1]

[2]

Lola finds that 2 packets in her sample contain a free gift.

(iii) State, with a reason, the conclusion she should draw.

Mark scheme

4	(i)	$P(X \le 1) = (0.75)^{20} + 20(0.75)^{19}(0.25)$ = 0.0243	M1 A1	Attempt correct expression
		$P(X \le 2) = (0.75)^{20} + 20(0.75)^{19}(0.25) + {}^{20}C_2(0.75)^{18}(0.25)^2 = 0.0913 \text{ or } 0.0912$	M1 A1	Attempt correct expression OR Find P(2) = 0.0669 or 0.0670
		Critical region is 0 or 1 pkt contain gift or < 2 pkts contain gift oe	A1 [5]	dep M1M1 & their P($X \le 1$) < 0.05 < their P($X \le 2$) (S.R. Use of Normal: N(5.3.75 ²) used B1 -1.645=(x + 0.5 - 5)/ $\sqrt{3}$.75 M1 x < 1.31 A1 (3/5))
	(ii)	P(Type I) = 0.0243 (3 sfs)	B1ft [1]	ft their $P(X \le 1)$ dep < 0.05 ft Normal
	(iii)	2 is outside rej reg No evidence to reject claim	M1 A1ft [2]	or $P(X \le 2) > 0.05$ No contradictions

4) Sol:-	this margin
let x denotes : sample [0 Fq 120]	9 (11)
packets	
P(reject 11 when it true)	
Let p = proportion of free	
giftet (innx) & e meallor pacske Him H	
0 (1)9 + (0)9	
Anst 10 = 09 62,4Hb. (35.F)	R
1.1/ 0.35	
henshould zono 1 x go. Hhnalt	(iii) 5
IFROH issi true: DOIT TO DIIIdodor	9
1 9 m p 2 . 1x1 x Bnil 20,00.252).0 np	th
is copid 2120) Rejected H. and	11
. P2(× < ×); 1<00 00510 1900	D
Critical region:	
1 E 10 4 - 10 - 120 - 20 75 10	. C
P(0) : (20) (0.25) (0.75) -: 10	5) 5
F(n): k 3 6 % 6 5	(i)
$= 0.003L_{0C} = 0.003$	
19 Ro	
P(1) = (20)(0.25)(0.75)(10) +	
	MO
= 0.02114	
$P(2) : (20) = (0.25) - (0.75) \times 3.55$	
	MIA
: 0.0669	
P(0) + P(F) + P(12) >> - 01 015 >	
$\therefore Critical region = P(0) + P(1)$ $= critical region = C(0) + P(1)$ Ans : P(x \le 1)	42 AD

Example candidate response – 1, continued

(ii)	Let x denotes = foronge I ogy Jog 9
	Dackets
-	P(reject 11, when it tive)
	Let p: proportion of free
	$\frac{ 1 }{0} with 9 x t 1 y c who on p (x n \le 1) = 7 i p$ $P(0) + P(1)$
<u>.</u>	P(0) + P(1)
BI	Anses 096243. (35.F)
	Vac (Gy) - Vor (S)
(111)	She should conclude that
	probability OF Free gift is test than 0.2(575.00 s) S Ding the sample
	than 0.2(575.00 s) S Dind the sample
mo	it is 0.1 (2/20). Reject H and
	accept allernative > stesst.
(7)	: no i p 51 + 1 b 1 : 1 1)
Q	

Item marks awarded: (i) = 2/5; (ii) = 1/1; (iii) = 0/2

Total mark awarded = 3 out of 8

mgram Access	Guestion 4
set.	let x be the riv, of a cereal monifacturer claiming cereal"
	(See spi) trank packets
	X~B(20,0.25)
-	H. & O. 25 (Reject H.) H. 70.25 (Accept H.) MOSIN
(i)	P(Type I error) = P (Reject H, / H is true)
1-00	$= P(H_{2}(0,25)) = 0.05$
	a)=0.95 = level of significance.
	a = 1.695 = 1.695
34	= $0.9198 \leftarrow (critical region)$
1	P(X < 0.25) < 5 % -7 Reject H
1	2°c (0.25)° (0.75)° + 2°c (0.25) (0.15) + 1030
	20c (0,25) 2 (0,15) 8 + 20c (0,25) 3 (0,15) 17+
MO	$\frac{2^{\circ}c}{2^{\circ}c} (0.25)^{\circ} (0.75)^{\circ} + \frac{2^{\circ}c}{2^{\circ}c} (0.25)^{\circ} (0.15)^{\circ} + \frac{10^{\circ}}{10^{\circ}} + \frac{2^{\circ}c}{2^{\circ}} (0.25)^{\circ} (0.75)^{\circ} + \frac{2^{\circ}c}{2^{\circ}} (0.25)^{\circ} + \frac{2^{\circ}c}{2^$
Mp	$+ 20C_{1}(0,25)'(0,15)'' + 20C_{8}(0,25)(0,15) + 20C_{9}(0,25)'(0,15)$
- les	$+206_{0}(0.25)''(0.75)'' + 206_{1}(0.25)''(0.75)''$
(")	(Type I Rmor) = 1.645
bo	let M be the 6 people
VD	MWH (GX426 GX105) 200= (0,00)
(11)	This means that there is significant evidence as it does
1 -	ties belor not lie in the critical region (. 25P×2) = about
MO	= 305.6
\bigcirc	
(O)	Standard sciention (5×105) +500

Item marks awarded: (i) = 0/5; (ii) = 0/1; (iii) = 0/2

Total mark awarded = 0 out of 8

Examiner comment - 1 and 2

(i) Finding the critical region was not, in general, well attempted.

Candidate 1 used B(20, 0.25), but calculated P(0), P(1), and P(2) separately without combining the probabilities to find P(X \leq 1) and P(X \leq 2), so although the candidate identified the correct critical region (although not expressed correctly) full justification (i.e. P(X \leq 1) = 0.0243 < 0.05 and P(X \leq 2) = 0.0913 > 0.05) was not shown.

Candidate 2 also used B (20, 0.25), but did not calculate any relevant probabilities and used 1.645 (a normal distribution value).

(ii) Candidate 1 correctly found the probability of a Type I error (0.0243) from previous working.

Candidate 2 gave an answer of 1.645 which, for a probability, could not have been correct. It is important that candidates always think about how sensible their answers might be.

(iii) In general, candidates on this part of the question did not draw conclusions relating back to the test.

Candidate 1 had the correct critical region and could have gained marks here by realising that '2' was not in the critical region. However, no marks were gained.

Although candidate 2 did make reference to the critical region, no justification for their (vague) statement was made. Candidates should be specific with comparisons; "it" does not lie in the critical region is too vague.

Question 5

5 A random variable *X* has probability density function given by

$$f(x) = \begin{cases} \frac{k}{x-1} & 3 \le x \le 5, \\ 0 & \text{otherwise,} \end{cases}$$

where *k* is a constant.

(i) Show that
$$k = \frac{1}{\ln 2}$$
. [4]

(ii) Find a such that P(X < a) = 0.75.

[4]

-

Mark scheme

Г

5 (i) $\int_{3}^{5} \frac{k}{x-1} dx$		M 1	Attempt integ $f(x) \& = 1$ ignore limits
$[k\ln(x -$	$(-1)]\frac{5}{3} = 1$	A1	Correctly integrated; ignore limits
$k(\ln 4 - k\ln 2 =$	$\ln 2) = 1$	M1 A1 [4]	Subst of limits 3, 5
$(k = \frac{1}{\ln 2})$			No errors seen. No decimals seen
(ii) $\frac{1}{\ln 2} \int_3^x \frac{1}{x} \frac{1}{\ln 2} \left[\ln \frac{1}{x} \right]^x$	$\int_{-1}^{1} dx = 0.75$ $h(x-1) \int_{3}^{x} = 0.75$	M1*	Attempt integ $f(x)$, unknown limit, & '= 0.75'or '= 0.25'
ln(x -	$h(x - 1) - \ln 2) = 0.75$ 1) = (0.75 × ln2 + ln2) 1) = 1.75 × ln2	Al	oe. Fully correct equn after subst limits
	$2^{1.75}$ or $x - 1 = 3.36$ 6 (3 sfs)	M1 dep* A1 [4]	oe. Correct manipulation of logs to find x

	5
5 1)	k [1 _ =]
	rou (64) = 6 voi (4)
0	$\left[\frac{1}{k} \int \ln \left[\frac{n+1}{2}\right]^{5} = 1$. 00502100 RM
	1008-81CC) = D
	k[1n4-1n2]=1 8. PORT =
	K [in (1/2)] = 1 (928) OIFP =
	k = 1
	$\ln(4)$
	K = 1 / .22.0 × 9:
4	In 2. (200 00)and the school
(n)	P(n <a)= 0.752012(22.031)9="" 1000<="" poll="" th=""></a)=>
(3)	11°-1 = 0.75.
510	In2 x-1
	1 [In x-1] =0.45 ./ (ar.e a) how
pu	in2 3 OBRITA S . THE DEST
M	$\int \ln \alpha - 1 - \ln 2 = 0.85 \ln 2.$
	$\ln (a-1) = 0.75 \ln 2.$
	$\frac{\alpha_{-1}}{\alpha_{-1}} = 2^{0.75} / 00000000000000000000000000000000000$
ALL	$\alpha - 1 = 0^{0.95} \times 21$ $\alpha = (0^{0.75} \times 2) + 1 = 0.36 - (3 \text{ sf})$
AP	a= (20.75x2) +1 F 2.36- (3SF)
()	

Item marks awarded: (i) = 4/4; (ii) = 3/4

Total mark awarded = 7 out of 8

Question 5.		0.3603%	ln(a-1) =	this margi
		0-2003 9 =	1 - D	
(i) $\int_{-\infty}^{5} K =$		= 2.93		
J3 2-1	11			5
				(\leq)
$K \ln(x-1)$	= 1		Suestion 6	
	3 /			MI
es even people	sideed as not	inpthed is l	Because this	(i) ·
K 1n4-1n2	of being, selector	equal dance	and Inventional Iliu	AL
s L				
hock to. Nest C	V 8980	Signature	(Aumoch_	10(
K Ing =	Bill US	of dence, interv	At/r991% Cor	(11)
	R.326 / RS95	= PS ±	(a) = 0.99	AO.
Inzk =			nin Examit#(D)(Inty
1. It sets the information K route			Question No. 4.6	e Blank
$2 = \sqrt{16} $ the $\left(\frac{1}{00} \right) \left(\frac{1}{000} \right) \left(\frac{1}{000}$	Inz Skere	= 38 =		1
. Leave a lynne speciologia	the analyse-to-cach do	15008	2	1723
(1) $P(x < q) =$	0.75	hourse	3	1-1-1-1
	± 0.06952		· · · · · · · · · · · · · · · · · · ·	TT A
1 a /	= 0.75	200		1.
3 /	rted the information rec	jured in		101
uns an-Ver book and er ac	01725 < A < 0	o ç o		
1 [In (x-1)	$7^{a} = 0.75$	di na ma		
In2L	3 Barres Do po	Inove		MI
any pages from this answe	(808d).			
1 [In (a-1)	- In 2 = 0.75	sheet(s)		AI.
Inzl			1	
(in (a-1)	= 0.51986			MO
In2				110

Example candidate response - 2, continued

Question No.	$\ln (a-1) = 0.3603$ $a-1 = e^{0.36033976}$			Nothing is to be written in this margin
	$a - 1 = e^{0.360.33976}$			0
u	$\alpha = 2.43$	<u> </u>	6 K	(1)
\bigcirc			13 2-1	
		G		

Item marks awarded: (i) = 3/4; (ii) = 2/4

Total mark awarded = 5 out of 8

Examiner comment - 1 and 2

(i) Candidate 1 scored full marks on this part.

Candidate 2 knew the correct method to use to find k, but made an error in their manipulation of the logarithmic expression. Whilst the candidate reached the correct value of k it was not legitimately obtained and therefore did not score the final accuracy mark.

(ii) Candidate 1 was able to integrate correctly using the correct limits and would have scored full marks but unfortunately made a re-arrangement error, on the last line, when solving the equation to find *a*.

Candidate 2 also had a correct method to find *a*, using the correct integration and correct limits, but as in part (i), showed a misunderstanding of logarithms by stating that $\ln(a-1) - \ln 2$ was equal to $\frac{\ln(a-1)}{\ln 2}$

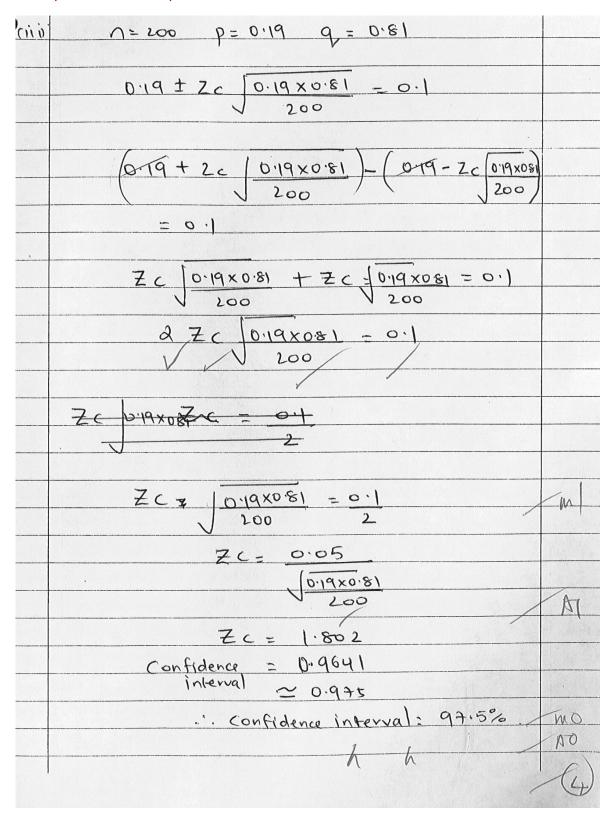
[1]

Question 6

- 6 In order to obtain a random sample of people who live in her town, Jane chooses people at random from the telephone directory for her town.
 - (i) Give a reason why Jane's method will not give a random sample of people who live in the town.

Jane now uses a valid method to choose a random sample of 200 people from her town and finds that 38 live in apartments.

- (ii) Calculate an approximate 99% confidence interval for the proportion of all people in Jane's town who live in apartments. [4]
- (iii) Jane uses the same sample to give a confidence interval of width 0.1 for this proportion. This interval is an x% confidence interval. Find the value of x. [4]


Mark scheme

6	(i)	Excludes children Excludes people without phones More than one person in some houses Some ex-directory	B1	[1]	or other implying directory excludes some people
	(ii)	$Var(p) = \frac{\frac{38}{200}(1 - \frac{38}{200})}{200} (= 0.0007695)$ z = 2.576 $\frac{38}{200} \pm z \sqrt{\frac{\frac{38}{200}(1 - \frac{38}{200})}{200}}$ 0.119 to 0.261 (3 sfs)	M1 B1 M1 A1	[4]	Seen For correct form of CI Accept 0.262 Must be an interval
	(iii)	$z \times \sqrt[6]{0.0007695'} = 0.05$ z = 1.802 $\Phi(1.802')$ (= 0.9642) ($(0.9642' - (1 - 0.9642') = 0.9284$) x = 93 (2 sfs)	M1 A1 M1 A1	[4]	$z \times (\text{their sd of } p) = 0.05$. Allow = 0.1 Attempt $\Phi(\text{their } z)$ and find $2\Phi - 1$

.....

6. (i) Jane's method will not give a random
Sample because people in the chose that
She has chosen from the telephone
BO directory may not live in the town.
Subce d is graden than the levere from
Lang puesso d'istrationales as approximated
(ii) $n = 200 p = 38 q = 1 - 38 200 200$
(p=10.19 = 0.81
99% = 0.99 (2457) 9
$Z_{\rm C} = 2.326.$ (D) (C) (1)
ml Ps ± Re Zc. Psqs action
en / n
0.19 ± 2-326 10.19×0.81
$\frac{80}{1000} = 1000000000000000000000000000000000000$
(0.125; 0.255)
A0 -= 3400 -
· 0.125 < p < 0.255 !

Example candidate response - 1, continued

Item marks awarded: (i) = 0/1; (ii) = 2/4; (iii) = 2/4;

Total mark awarded = 4 out of 9

	Question 6 (1-x) of X
(أ)	Because this method is biased as not every people
	will have the equal chance of being, selected in the sample.
150	
(11)	At 99% confidence interval
01-	$\phi(a) = 0.99 = Ps \pm 2.326 / Ps 9s$
······	Φ(a)=
	$\left(\frac{1}{2} + \frac$
	$= 38 \pm 2326 \left(\begin{pmatrix} 38 \\ 200 \end{pmatrix} \right) \begin{pmatrix} 162 \\ 200 \end{pmatrix}$
lp	200 200
-pal-	(X < Q) = 0.75
M	= <u>38</u> ± 0.06952 200
10	7-1
p0.	:, 0:125 < H < 0.255
i le	$1 - \int n(x-1) = 0.75$
6	2
12	
(11)	P. C. M. S. X. S. M. T.
	$2\varphi(z)-1=0.1$
he,	$2\phi(z) = 1 \cdot 1$
po,	x = 0.125
	x = 12.5%
W	01 a - 11 Jo

Item marks awarded: (i) = 0/1; (ii) = 2/4; (iii) = 0/4

Total mark awarded = 2 out of 9

Examiner comment - 1 and 2

- (i) Neither candidate was able to give a correct reason for why Jane's method would not work. The method described did not allow equal chance of being selected because, for example, it excludes people without phones. A valid reason was required.
- (ii) Both candidates made similar errors in finding the confidence interval. Whilst the general method was correct, both candidates 1 and 2 calculated the *z* value incorrectly. Both looked up 0.99 to get a *z* value of 2.326, whereas for a 99% confidence interval 0.995 should have been looked up on the tables to get a *z* value of 2.576. This resulted in two marks not being awarded to both candidates.
- (iii) Candidate 1 formed a correct equation, leading to the correct *z* value of 1.802. However, the candidate did not find the correct percentage for the confidence interval.

Candidate 2 was unable to set up a correct initial equation to find z.

Question 7

- 7 A random variable X has the distribution Po(1.6).
 - (i) The random variable R is the sum of three independent values of X. Find P(R < 4). [3]
 - (ii) The random variable S is the sum of n independent values of X. It is given that

$$P(S = 4) = \frac{16}{3} \times P(S = 2).$$

Find n.

[4]

(iii) The random variable T is the sum of 40 independent values of X. Find P(T > 75). [4]

Mark scheme

7	(i)	$\lambda = 4.8$ E ^{-4.8} (1 + 4.8 + $\frac{4.8^2}{2!}$ + $\frac{4.8^3}{3!}$) = 0.294 (3 sfs)		B1 M1 A1	[3]	$P(R = 0, 1, 2 \text{ or } 3)$, their λ allow one end error	
	(ii)	$e^{-\lambda} \times \frac{\lambda^4}{4!} = \frac{16}{3} e^{-\lambda} \times \frac{\lambda^2}{2!}$ $\frac{\lambda^2}{12} = \frac{16}{3}$ $(\lambda = 8)$ $\lambda = 1.6n \text{ seen or implied}$ $n = `8' \div 1.6$ $= 5$	or better	M1 A1 B1 A1	[4]	$\lambda = 1.6n \text{ seen or implied} e^{-1.6n} \times \frac{(1.6n)^4}{4!} = \frac{16}{3} e^{1.6n} \times \frac{(1.6n)^2}{2!} \frac{(1.6n)^2}{12} = \frac{16}{3} \text{ or better} (1.6n = 8) n = 5$	B1 M1 A1 A1
	(iii)	$T \sim N(64, 64)$ $\frac{75.5 - 64}{\sqrt{64}}$ $1 - \Phi(`1.4375')$ $= 0.0753 \text{ to } 0.0754$	(= 1.4375) (= 1 - 0.9247)	B1 M1 M1 A1	[4]	May be implied Allow with wrong or no cc. No sd/var mixes Finding correct area consistent with their working	

X~P6 (1.6). 3726 (4.8) 5 PCRZY lo +P, +P3 + P3)_ 1+ U.B + U.82 21 Q.83 - 4.8 31 0.294. 01-12 e-1.60 × 1.60 4 Sau (P) 24 4!000 e-1.60-1.62 e-1.6 P. 1.602 2 2! (2. 1.6 1 2 to x e × 1.60 60 21 62 517 0 1.6n × 1.6n 4 60, 1.6n² 16e-1 3 (X24) 2 24 1602 e-1.67 × 1.604 -1.60 128 × 1.61 C q= ~ x agy = 128 (12(e= ~ a2)] que-a = 128 (10ren2a² e⁻⁹) a" e= == 1536 a2 e= a. -e-a q2 = 1536. 1.6 1 = 39.192 a = 39.192 00 N=24 N=24.49

Paper 7

Example candidate response – 1,	continued
---------------------------------	-----------

(Fi)	Neus	
	AS 1>15, X~N(64,64)	BI
	$P(T>76) = \overline{X} - 6e$	
	P(2>75-64)	MI
	$\binom{2 > 75 - 64}{\sqrt{6u}}$	MI
	$= (- \phi (1.375))$	AQ.
	= 0.0845	1101
	4	
		A
	and the second	Ø

Item marks awarded: (i) = 3/3; (ii) = 2/4; (iii) = 3/4

Total mark awarded = 8 out of 11

7 Po (1.6) X N N 2683.H-S (i) Xt =R) S N XIX Po N 4.8 . 9-63 PotP, tR, tR P 54 1.) e-21.8 12 6+ 4-8+ 4.82 + 4.83 1 21 31 0.294 (33F) in 4 64 (11) 5=4 P(S=2) 1 16 3 1 18 21 (.e) S 110 N Po (5=4) p1.61 . 1.61 P P(S=2) = = -16.1062 11 165 2) 41 e. 1.6n4 -litin 1.62 S. 4 2, Bruchets wird 41 AO TARA) 16 min 6.5536 n4 2.56n 04/ Kunne for 224 2 13.1072 n4 61.44 n2 +h2 -13.1072 22 61.44

Example candidate response - 2, continued

3.1072 12 = 61.44 Ward I want of har n² = 4.8875 2.165 Y dry to X n 2 2.17 (358) n= (iii) 400 X 1.6 (11) NSX Po 64 N N>50=64 64 V N 64 1 272.9 1 P 黄杏 -75.5 V64 A.S 101-10: 10:219 2 72/14 -.436 .372 11 RAUMEN J. West -0.9244 4 di 2.56 NE MO C Ain - 1'n spol. 81 "d+ A HIS.11 13.10 = "ASFOIEL

Item marks awarded: (i) = 3/3; (ii) = 2/4; (iii) = 2/4

Total mark awarded = 7 out of 11

Examiner comment - 1 and 2

- (i) Both candidates were able to identify the value of λ to use (4.8) and then correctly to find the required probability.
- (ii) Both candidates at both grades were able to set up the correct equation and use $\lambda = 1.6n$. They both tried to solve this equation to find *n*, but neither successfully reached n = 5.

Candidate 1 made an early error when rearranging their equation, and candidate 2, whilst initially having used the given value of 16/3 in their equation, missed this value out in later working.

(iii) Candidate 1 used the correct distribution N(64,64) to find the required probability, but omitted to use the required continuity correction.

Candidate 2 also used N(64,64), but found $\phi(z)$ rather than 1– $\phi(z)$. A normal distribution diagram may have helped this candidate realise that their final answer should have been smaller than 0.5, thus avoiding the error made.

Cambridge International Examinations 1 Hills Road, Cambridge, CB1 2EU, United Kingdom tel: +44 1223 553554 fax: +44 1223 553558 email: <u>info@cie.org.uk</u> www.cie.org.uk

