

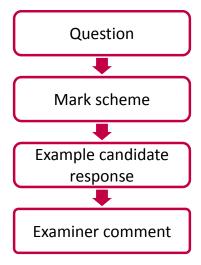
Example Candidate Responses

Cambridge International AS and A Level Mathematics

9709

Paper 1

Contents


Introduction	2
Assessment at a glance	3
Paper 1	5

Introduction

The main aim of this booklet is to exemplify standards for those teaching Cambridge International AS & A Level Mathematics (9709), and to show how different levels of candidates' performance relate to the subject's curriculum and assessment objectives.

In this booklet candidate responses have been chosen to exemplify a range of answers. Each response is accompanied by a brief commentary explaining the strengths and weaknesses of the answers.

For ease of reference the following format for each component has been adopted:

Each question is followed by an extract of the mark scheme used by examiners. This, in turn, is followed by examples of marked candidate responses, each with an examiner comment on performance. Comments are given to indicate where and why marks were awarded, and how additional marks could have been obtained. In this way, it is possible to understand what candidates have done to gain their marks and what they still have to do to improve them.

Past papers, Examiner Reports and other teacher support materials are available on Teacher Support at https://teachers.cie.org.uk

Assessment at a glance

The 7 units in the scheme cover the following subject areas:

- Pure Mathematics (units P1, P2 and P3);
- Mechanics (units M1 and M2);
- Probability and Statistics (units S1 and S2).

Centres and candidates may:

- take all four Advanced (A) Level components in the same examination session for the full A Level.
- follow a staged assessment route to the A Level by taking two Advanced Subsidiary (AS) papers (P1 & M1 or P1 & S1) in an earlier examination session;
- take the Advanced Subsidiary (AS) qualification only.

AS Level candidates take:

Paper 1: Pure Mathematics 1 (P1)

1¾ hours

About 10 shorter and longer questions 75 marks weighted at 60% of total

plus one of the following papers:

Paper 2: Pure Mathematics 2 (P2)	Paper 4: Mechanics 1 (M1)	Paper 6: Probability and Statistics (S1)
1¼ hours About 7 shorter and longer questions 50 marks weighted at 40% of total	1¼ hours About 7 shorter and longer questions 50 marks weighted at 40% of total	1¼ hours About 7 shorter and longer questions 50 marks weighted at 40% of total

A Level candidates take:

Paper 1: Pure Mathematics 1 (P1)	Paper 3 Pure Mathematics 3 (P3)
1% hours About 10 shorter and longer questions 75 marks weighted at 30% of total	1% hours About 10 shorter and longer questions 75 marks weighted at 30% of total

plus one of the following combinations of two papers:

Paper 4: Mechanics 1 (M1)	Paper 6: Probability and Statistics 1 (S1)
1¼ hours About 7 shorter and longer questions 50 marks weighted at 20% of total	1¼ hours About 7 shorter and longer questions 50 marks weighted at 20% of total

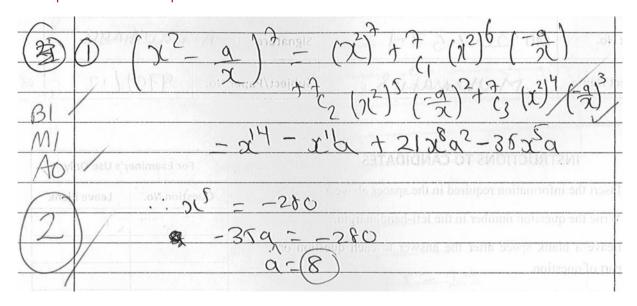
or

Paper 4: Mechanics 1 (M1)	Paper 5: Mechanics 2 (M2)
1¼ hours About 7 shorter and longer questions 50 marks weighted at 20% of total	1¼ hours About 7 shorter and longer questions 50 marks weighted at 20% of total

or

Paper 6: Probability and Statistics 1 (S1)	Paper 7: Probability and Statistics 2 (S2)
1¼ hours About 7 shorter and longer questions 50 marks weighted at 20% of total	1¼ hours About 7 shorter and longer questions 50 marks weighted at 20% of total

Teachers are reminded that the latest syllabus is available on our public website at www.cie.org.uk and Teacher Support at https://teachers.cie.org.uk


Paper 1

Question 1

In the expansion of $\left(x^2 - \frac{a}{x}\right)^7$, the coefficient of x^5 is -280. Find the value of the constant a. [3]

1	$\left(x^2 - \frac{a}{x}\right)^7$ Term in x^5 is ${}_7C_3 \times (x^2)^4 \times (-a/x)^3$ This term isolated Equated to $-280 \rightarrow a = 2$.	B1 M1 A1 [3]	Allow on own or in an expansion. Correct term in x^5 selected. Equated to -280
---	---	-----------------------	--

Paper 1

Total mark awarded = 2 out of 3

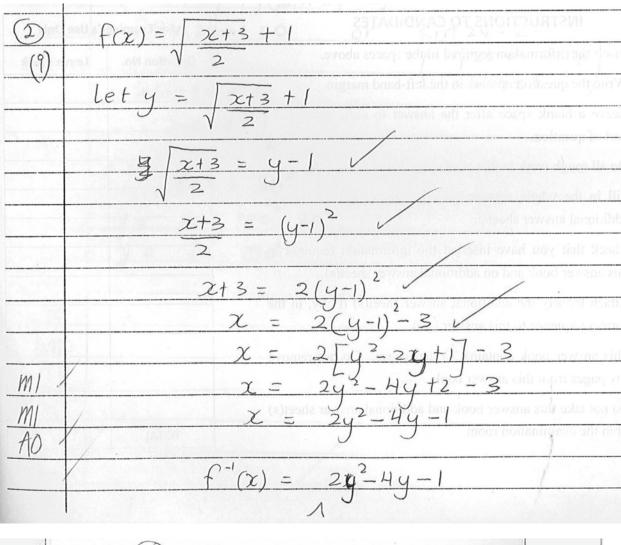
Write in the	QUESTION OA	папате ванне
'Question'		
the number of each question	$\left(2\left(2-\frac{2}{3}\right)\right)$	N-r=5
answered	(0)	ATENNAS AS JUDIOUS ENOTI ANIMAXS
Question	(c)(e) (b)	and General Certificate of Edu 7-22 Julinur
1.	(7) 7-2. 2	r=2
BO	$\binom{7}{2} \cdot (2^2)^{7-2} \cdot (\frac{2}{2})^2 = -28$	SUBJECT NAME: CHOSEN STREET, O
MO	21082 = -280	
	Z-	
	$212^256^5 = -280$	ANSWERBOOKLET
	$213^2 = -280$	2=3.7
	21 21	0=4
/	Va2 = 1	Write your name, centre number and
(0)	FOR EXAMINER'S USE OF	candidate number in the spaces at the top of
	$2 = -\sqrt{\frac{290}{2}}$	this page.

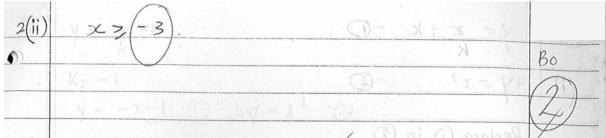
Total mark awarded = 0 out of 3

Examiner comment - 1 and 2

This question proved to be more successful for candidates who wrote down several terms of the expansion. In this particular case, candidate 2 only wrote down one term and made the common error of assuming that $(x^2)^5 = x^7$. This led to the incorrect term in x^5 . Candidate 1 wrote down the first four terms in the expansion and correctly selected the term that would lead to the coefficient of x^5 . Unfortunately, this candidate, although

obtaining the correct value for the binomial coefficient ${}_{7}C_{3}$, made the common error of expanding $\frac{-a^{3}}{x}$ as

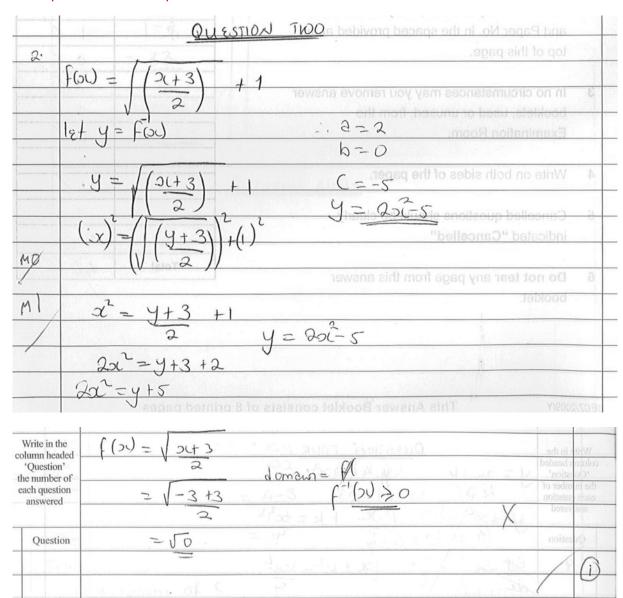

 $\frac{-a}{r^3}$. Similar errors, particular over the "-" sign, affected many scripts at both of these levels.


Paper 1

Question 2

- 2 A function f is such that $f(x) = \sqrt{\left(\frac{x+3}{2}\right) + 1}$, for $x \ge -3$. Find
 - (i) $f^{-1}(x)$ in the form $ax^2 + bx + c$, where a, b and c are constants, [3]
 - (ii) the domain of f^{-1} . [1]

2	(i) $f(x) = \sqrt{\frac{x+3}{2}} + 1$, for $x \ge -3$ Make x the subject or interchanges x,y $\rightarrow 2(x-1)^2 - 3$ $\rightarrow 2x^2 - 4x - 1$ (ii) domain of f^{-1} is ≥ 1 .	M1 M1 A1 [3] B1 [1]	Attempt at <i>x</i> as subject and removes +1 Squares both sides and deals with "+3" and "÷2". co co. condone >1
---	---	------------------------------	--



Item marks awarded: (i) = 2/3; (ii) = 0/1

Total mark awarded = 2 out of 4

Paper 1

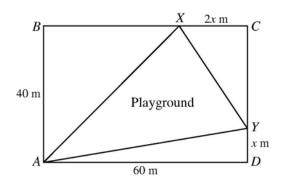
Item marks awarded: (i) = 1/3; (ii) = 0/1

Total mark awarded = 1 out of 4

Examiner comment - 1 and 2

(i) Neither of these candidates made the common error of misreading the expression for f(x), i.e.

$$\sqrt{\frac{x+3}{2}} + 1$$
 as either $\sqrt{\frac{x+3}{2}}$ or $\sqrt{\frac{x+3}{2} + 1}$, but these scripts do illustrate two of the common errors which


affected this question. Candidate 2 made a basic algebraic error in replacing
$$\left(\sqrt{\frac{x+3}{2}}+1\right)^2$$
 with

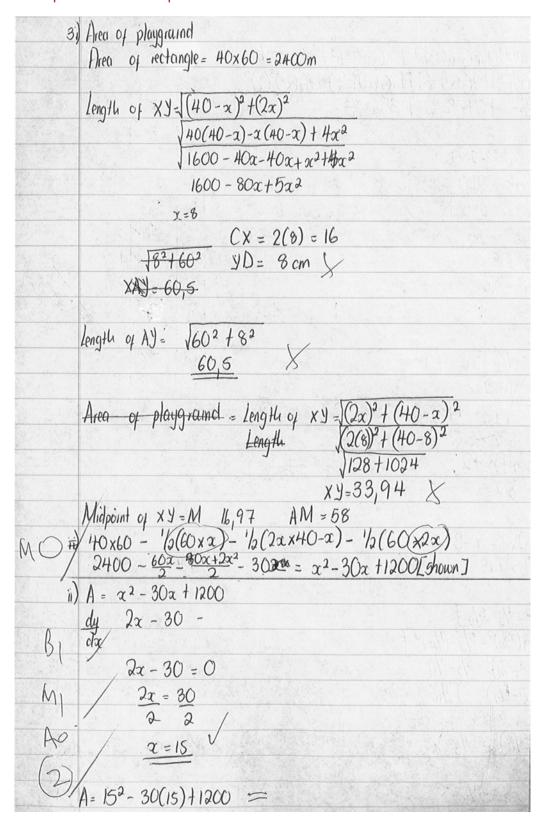
$$\frac{x+3}{2}$$
 +1, although they did then proceed to make x the subject. Candidate 1 correctly manipulated the

- algebra to make x the subject, but then did not realise that the answer to $f^{-1}(x)$ must be given in terms of x. The question illustrates the need to read the question carefully, to avoid the common misread and to ensure that answers are given in the form requested and in terms of x.
- (ii) This part of the question was very badly answered by candidates at all levels. Candidates seemed to be unsure of the fact that the domain of f^{-1} was the same as the range of f and that substituting x = -3 into the expression for f(x) would lead to $x \ge 1$. Candidate 2 did at least attempt to substitute x = -3, but made the mistake of omitting the "+1". Candidate 1 assumed that the domain of f and f^{-1} were the same.

Question 3

3

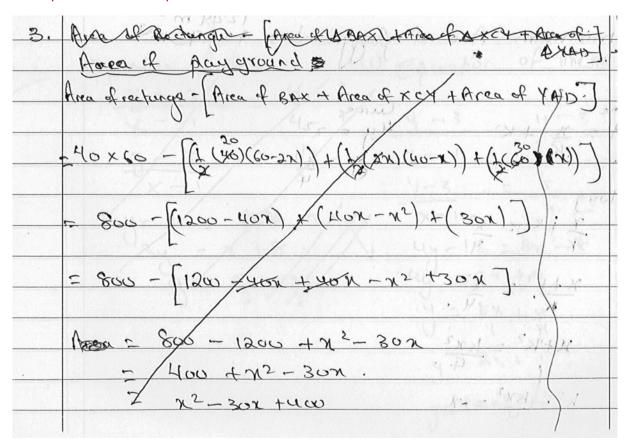
The diagram shows a plan for a rectangular park ABCD, in which AB = 40 m and AD = 60 m. Points X and Y lie on BC and CD respectively and AX, XY and YA are paths that surround a triangular playground. The length of DY is x m and the length of XC is X m.

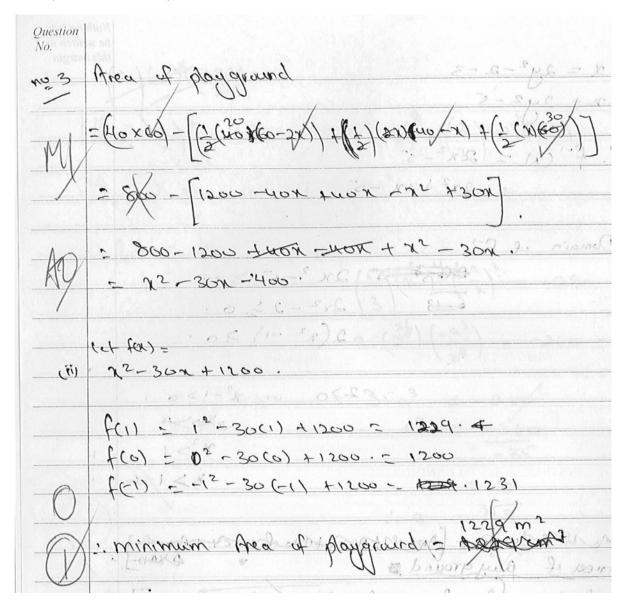

(i) Show that the area, A m², of the playground is given by

$$A = x^2 - 30x + 1200. ag{2}$$

[3]

(ii) Given that x can vary, find the minimum area of the playground.


3	(i) $A = 2400 - 20(60 - 2x) - x(40 - x) - 30x$ $\rightarrow A = x^2 - 30x + 1200.$ (could be trapezium – triangle)	M1 A1 [2]	Needs attempts at all areas co answer given
	(ii) $\frac{dA}{dx} = 2x - 30$ or $(x - 15)^2 + 975$ = 0 when $x = 15$ or Min at $x = 15$ $\rightarrow A = 975$.	B1 M1 A1 [3]	co - either method okay Sets differential to 0 + solution. co co.


Item marks awarded: (i) = 0/2; (ii) = 2/3.

Total mark awarded = 2 out of 5

Paper 1

Example candidate response – 2, continued

Item marks awarded: (i) = 1/2; (ii) = 0/3

Total mark awarded = 1 out of 5

Paper 1

Examiner comment - 1 and 2

- (i) Many candidates found this part difficult. Many did not realise that the required area could be obtained by subtracting the sum of the areas of the three triangles from the area of the large rectangle. Many candidates attempted to use Pythagoras's Theorem, as did candidate 1, before changing direction, and many others adjusted their answer to that given. Candidate 2 used a correct method, but made a careless error in attempting to obtain the required answer. Candidate 1 made an error with the area of one of the triangles.
- (ii) It was pleasing that most candidates, even if unable to answer part (i), proceeded to use the given answer to obtain the minimum value of *A*. Only a few candidates did not realise the need to use calculus, and candidate 2 was one of them. Most differentiated correctly and set the differential to 0, though many others thought the second differential was 0. A surprising proportion, at least a third, did exactly the same as candidate 1, obtaining a correct value for *x* but failing to read the question carefully to find the corresponding value of *A*. This again illustrates the need to read questions carefully.

Question 4

4 The line $y = \frac{x}{k} + k$, where k is a constant, is a tangent to the curve $4y = x^2$ at the point P. Find

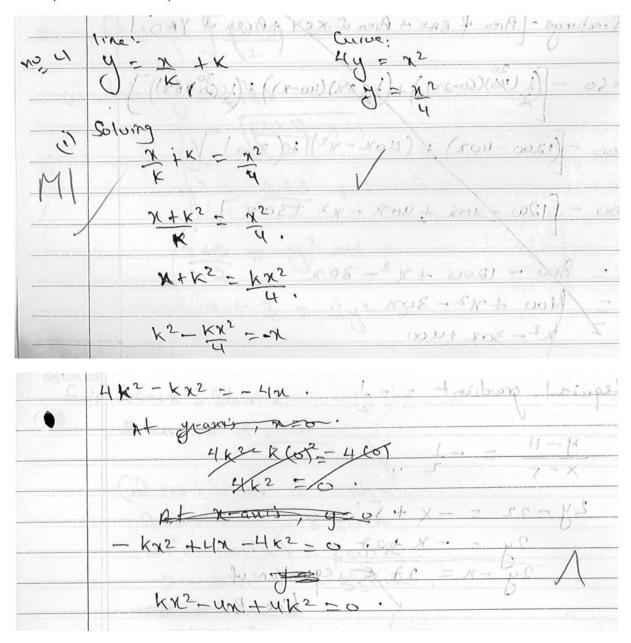
(i) the value of k, [3]

(ii) the coordinates of P. [3]

4	$y = \frac{x}{k} + k 4y = x^{2}$ (i) $\frac{x^{2}}{4} = \frac{x}{k} + k \rightarrow kx^{2} - 4x - 4k^{2} = 0$ Uses $b^{2} - 4ac \rightarrow k = -1$ (calculus $\frac{1}{k} = \frac{2x}{4}$ B1	M1 M1 A1 [3]	Eliminates x or y completely. Uses $b^2 - 4ac$ for a quadratic = 0 co nb a,b,c must not be $f(x)$
		M1 M1 A1 [3]	Elimination of x or y Soln of eqn. co.

Paper 1

(4) y= x &n, 4y=	x2) SA = 2000
	(2)
5-1/5-	
2- NH-	
X + 1 = - 2 1	12 Suc 7 W
生生	X THE R
E 1 201473	315 = (x) 49
4 (2 +n) = x2	50 4 10 - 2 k
49 +4n = x2	the state of the s
	La RANGE T 76 MINUSOR
42+4K2 = KX2	化不到的达 (数)
M1 KX2-4X-4K2=0	1333355
M/ a=k, b=-4, c=-4,	social rt
AO 6-49(20 62-	49(20188)
(4)2-4(K)(-4) 50 32-1	
16+16K60 N - PU	#16+161=0
15 HR 4-16 DOM DAY	K=-1
kt-1	not www
(ii) When K = -1 0, 44	= x20 (c) A)
y = >C-1 replan in equation k) Pt /
$4\left(\frac{2}{-1}-1\right)=x^{2}$	
$\frac{HX-H=X^2}{-1}$	mining of LUN A
=1	
4x +4 = -x2	Section 1997


Example candidate response – 1, continued

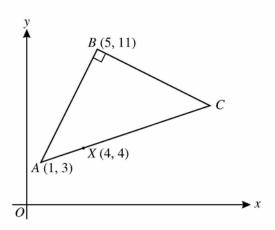
Question No.	FS SAX	Nothing is to be written in this margin
	22+W7C+4=0 P=4	ALCON
	x2 +22 +2x +4=0 S=4	
	X (2(42)+2(2(42) =0 (2,2)	13,50
	(x42) (x42) =0	
- /3	21-6-2 05 21 2	
	y=1 y21 - works y 100 - y	100
	- Carlo - 1 E - 11) - xr Po toxion	miny
	coordinates of P = (-2, 1) not www	Ao
	10 - 20 101 to 100 100 100 100 100 100 100 100 100 10	
-	BAH-RIV - H-V	(4)
(si)) Gradient of 13-118-2	P

Item marks awarded: (i) = 2/3; (ii) = 2/3

Total mark awarded = 4 out of 6

Paper 1

Item marks awarded: (i) = 1/3; (ii) = 0/3

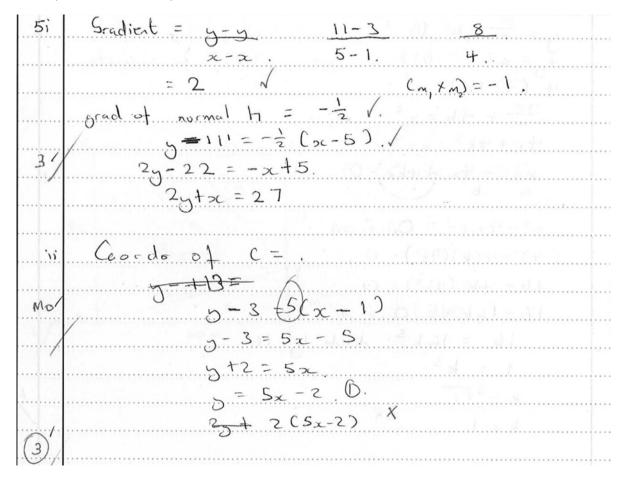

Total mark awarded = 1 out of 6

Examiner comment - 1 and 2

- (i) Weaker candidates found this question difficult and algebraic errors were very common. Both of these candidates realised the need to eliminate y from the two given equations and to form a quadratic equation in x. Weaker candidates, such as candidate 2, did not recognise that the discriminant, " $b^2 4ac$ ", needed to be equated with 0. There were a lot of algebraic errors over signs and in expressing a, b and c correctly in terms of k, and the error made by candidate 1 in taking "c" as "-4" instead of " $-4k^2$ " was very common across all levels of ability.
- (ii) Several candidates were unable to proceed with this part of the question, but most realised the need to substitute their value of *k* into the earlier quadratic equation and to then solve for *x*. The last accuracy mark was not gained if the answer, as with candidate 1, had been fortuitously obtained in part (i).

Question 5

5



The diagram shows a triangle ABC in which A has coordinates (1, 3), B has coordinates (5, 11) and angle ABC is 90° . The point X(4, 4) lies on AC. Find

(i) the equation of
$$BC$$
, [3]

(ii) the coordinates of
$$C$$
. [3]

5	A (1, 3), B (5, 11), X (4, 4) (i) Gradient of $AB = 2$ Gradient of $BC = -\frac{1}{2}$ $\rightarrow \text{ Eqn of } BC \text{ is } y - 11 = -\frac{1}{2}(x - 5)$ (ii) gradient of AC (or AX) is $\frac{1}{3}$ $\rightarrow \text{ eqn of } AC \text{ is } y - 3 = \frac{1}{3}(x - 1)$ or $y - 4 = \frac{1}{3}(x - 4)$	B1 M1 A1 [3] B1 M1	co For use of $m_1m_2 = -1$ co – unsimplified is fine co Correct form of line equation + sim eqns
		M1	Correct form of line equation + sim eqns co
		A1 [3]	answer only -0/3- assumed $AB = BC$. Uses graph or table and gets exactly (13,7) allow the 3 marks for (ii).

Item marks awarded: (i) = 3/3; (ii) = 0/3

Total mark awarded = 3 out of 6

Paper 1

5.	Gradient of AB.	o sagb thorodos and	N.
	A(1,3) $B(5,11)$	Barrier State Control	LANGE OF THE
	= 42-41	Comment of Status) -1 (-\$magen
	n2-41	Marie 4 18 25 1	2y-1) = 0
	= 11-3	Strauta	2.841112
	5-1	Sinau = A	Sant Sa
	= 8	20 39 40	Y. C. SARK
	+ = 2	/ /	an de

	: Gradient of BC = -12/
	9 x 2°
	Equation of BC = $\frac{9-11}{n-5}$ = $-\frac{1}{2}$
	BC5,(1) n-5 & 2
	2(y-11) = -1(n-5)
	2y-22 = -n+5
1	2y = -n+5+22
7	2y = -n + 2A
	du 12 up
	To find coordinates of c.
	Midpoint = (n,+12, y,+42)
0	MC1, 3)
110	1+92=4 3+42=4
	$ \begin{array}{c cccccccccccccccccccccccccccccccccc$
	$n_2 = 8 - 1$ $y_2 = 8 - 3$
	$n_2 = 7$ $y_2 = 5$
3	
1	Coordinates of = (1,5)

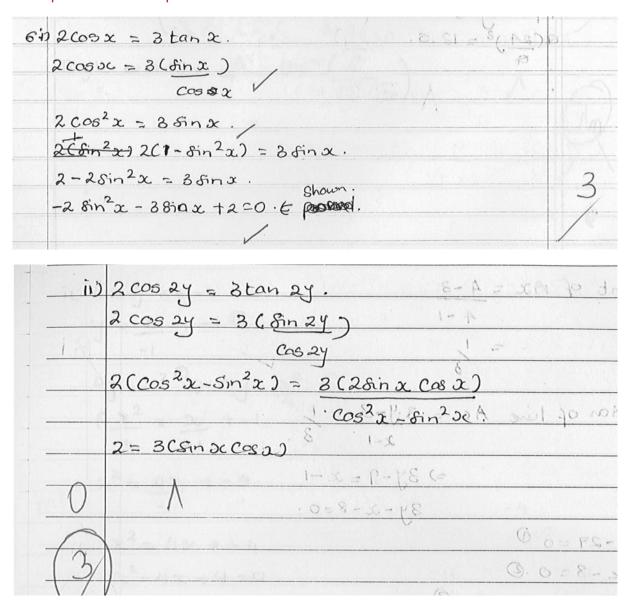
Item marks awarded: (i) = 3/3; (ii) = 0/3

Total mark awarded = 3 out of 6

Examiner comment - 1 and 2

- (i) This part of the question was correctly answered by nearly all candidates across the ability range and both of these candidates offered correct solutions. Other candidates made a few numerical errors in finding either the gradient of the line *AB*, the perpendicular gradient of *BC* or the equation of *BC*, but these were relatively infrequent.
- (ii) As with part (i), most candidates obtained full marks for this part of the question. Candidate 1 however made no attempt to find the gradient of AX, and hence AC, and there is no evidence for taking the gradient as 5. The solution offered by candidate 2 came from an assumption made by many candidates about properties of the diagram. Several assumed that the triangle ABC was isosceles, but without reason, and others assumed that AX was one quarter of AC, but again with no reasoning. Candidates should be aware that such assumptions cannot be given credit. In this particular case, candidate 2 assumed that X was the midpoint of AC and no credit could be given.

Question 6


- 6 (i) Show that the equation $2\cos x = 3\tan x$ can be written as a quadratic equation in $\sin x$. [3]
 - (ii) Solve the equation $2\cos 2y = 3\tan 2y$, for $0^{\circ} \le y \le 180^{\circ}$. [4]

6	$2\cos x = 3\tan x$ (i) Replaces $\tan x$ by $\sin x \div \cos x$ $\rightarrow 2c^2 = 3s \rightarrow 2s^2 + 3s - 2 = 0$		Uses $t = s \div c$ Uses $s^2 + c^2 = 1$. Correct eqn.
	(ii) Soln of quadratic $y = 15^{\circ}$ 2y can also be $180 - 30$ $y = 75^{\circ}$.	pe 180 – 30 A1 DM1 A	Method for quadratic = 0 and $\div 2$ co Works with $2y$ first before $\div 2$ for $90^{\circ} - 1^{\text{st}}$ answer. (loses $\sqrt{\text{mark}}$ if extra soln in range)

2 Cosx = 3tanx.	
	3 N-0 =
2005x = -3 005x	= 112
$2\cos x = 3\sin x$	= 0
COSX.	
$2\cos^2 x = 3\sin x$	+
2(1-sin2x) = 3sinx	= N
$2-2\sin^2x=3\sin x$	
-25in2x-35inx+2=0	F 3 /
(-1) 2sin2x + 3sinx-2=0.	
	= N
	=
	L
2 cos24 = 3tan24 + 5 = =	STX
(2 Sin 24-1) (Sin 24-2) =0.	8
201021 1=0 ar clasu=	212
/ rejected	d since
1-1 2 5 0 1	< 1
2 3181	when a
B. a = 30°	= 1
	= V
(S-F-3, (1)) 102340(1) 100)	
Cillbon-or-Line. MC 7 Min = MAX	
(Sordingles of C/123 3 7 -)	1431
1 2 3	- 1
7 - 4 - 3 - 1 - 1	
	1
3 (9/2) = 2-1	
	$2 \cos^{2} x = 3 \sin x$ $2 (1 - \sin^{2} x) = 3 \sin x$ $2 - 2 \sin^{2} x = 3 \sin x$ $-2 \sin^{2} x - 3 \sin x + 2 = 0$ $(2 \sin^{2} x + 3 \sin x - 2 = 0)$ $(2 \sin^{2} x + 3 \sin x - 2 = 0)$ $(2 \sin^{2} x + 3 \sin x - 2 = 0)$ $(2 \sin^{2} x + 3 \sin x - 2 = 0)$ $(2 \sin^{2} x + 3 \sin x - 2 = 0)$ $(2 \sin^{2} x + 3 \sin x - 2 = 0)$ $(2 \sin^{2} x + 3 \sin x - 2 = 0)$ $(2 \sin^{2} x + 3 \sin x - 2 = 0)$ $(2 \sin^{2} x + 3 \sin x - 2 = 0)$ $(2 \sin^{2} x + 3 \sin^{2} x - 2 = 0)$ $(2 \sin^{2} x + 3 \sin^{2} x - 2 = 0)$ $(2 \sin^{2} x + 3 \sin^{2} x - 2 = 0)$ $(2 \sin^{2} x + 3 \sin^{2} x - 2 = 0)$ $(2 \sin^{2} x + 3 \sin^{2} x - 2 = 0)$ $(2 \sin^{2} x + 3 \sin^{2} x - 2 = 0)$ $(2 \sin^{2} x + 3 \sin^{2} x - 2 = 0)$ $(2 \sin^{2} x + 3 \sin^{2} x - 2 = 0)$ $(2 \sin^{2} x + 3 \sin^{2} x - 2 = 0)$ $(2 \sin^{2} x + 3 \sin^{2} x - 2 = 0)$ $(2 \sin^{2} x + 3 \sin^{2} x - 2 = 0)$ $(2 \sin^{2} x + 3 \sin^{2} x - 2 = 0)$ $(2 \sin^{2} x + 3 \sin^{2} x - 2 = 0)$ $(2 \sin^{2} x + 3 \sin^{2} x - 2 = 0)$ $(2 \sin^{2} x + 3 \sin^{2} x - 2 = 0)$ $(3 \sin^{2} x + 3 \sin^{2} x - 2 = 0)$ $(4 \sin^{2} x + 3 \sin^{2} x - 2 = 0)$ $(2 \sin^{2} x + 3 \sin^{2} x - 2 = 0)$ $(3 \sin^{2} x + 3 \sin^{2} x - 2 = 0)$ $(4 \sin^{2} x + 3 \sin^{2} x - 2 = 0)$ $(5 \sin^{2} x + 3 \sin^{2} x - 2 = 0)$ $(7 \sin^{2} x + 3 \sin^{2} x - 2 = 0)$ $(7 \sin^{2} x + 3 \sin^{2} x - 2 = 0)$ $(8 \sin^{2} x + 3 \sin^{2} x - 2 = 0)$ $(1 \cos^{2} x + 3 \sin^{2} x - 2 = 0)$ $(2 \sin^{2} x + 3 \sin^{2} x - 2 = 0)$ $(3 \sin^{2} x + 3 \sin^{2} x - 2 = 0)$ $(4 \sin^{2} x + 3 \sin^{2} x - 2 = 0)$ $(5 \sin^{2} x + 3 \sin^{2} x - 2 = 0)$ $(7 \sin^{2} x + 3 \sin^{2} x - 2 = 0)$ $(7 \sin^{2} x + 3 \sin^{2} x - 2 = 0)$ $(8 \sin^{2} x + 3 \sin^{2} x - 2 = 0)$ $(1 \cos^{2} x + 3 \sin^{2} x - 2 = 0$ $(1 \cos^{2} x + 3 \sin^{2} x - 2 = 0$ $(2 \sin^{2} x + 3 \sin^{2} x - 2 = 0$ $(3 \sin^{2} x + 3 \sin^{2} x - 2 = 0$ $(4 \cos^{2} x + 3 \sin^{2} x - 2 = 0$ $(5 \sin^{2} x + 3 \sin^{2} x - 2 = 0$ $(7 \cos^{2} x + 3 \sin^{2} x - 2 = 0$ $(7 \cos^{2} x + 3 \sin^{2} x - 2 = 0$ $(7 \cos^{2} x + 3 \sin^{2} x - 2 = 0$ $(7 \cos^{2} x + 3 \sin^{2} x - 2 = 0$ $(7 \cos^{2} x + 3 \sin^{2} x - 2 = 0$ $(7 \cos^{2} x + 3 \sin^{2} x - 2 = 0$ $(7 \cos^{2} x + 3 \sin^{2} x - 2 = 0$ $(7 \cos^{2} x + 3 \sin^{2} x - 2 = 0$ $(7 \cos^{2} x + 3 \sin^{2} x - 2 = 0$ $(8 \cos^{2} x + 3 \cos^{2} x - 3 \cos^{2}$

Item marks awarded: (a) = 3/3; (b) = 0/4

Total mark awarded = 3 out of 7

Item marks awarded: (a) = 3/3; (b) = 0/4

Total mark awarded = 3 out of 7

Examiner comment - 1 and 2

- (a) This part of the question was answered well by virtually all candidates. The basic formulae relating $\sin x$, $\cos x$ and $\tan x$ were accurately applied and both of these candidates had little difficulty in obtaining a correct solution.
- (b) This part of the question proved to be more difficult. Many candidates, like candidate 2, failed completely to spot the link between the two parts. This particular candidate attempted to use the double angle formulae (not in fact a specific part of this syllabus) and was unable to make any progress. Candidate 1 recognised the link between the two parts, but having correctly obtained angles of 30° and 150°, did not gain the available method marks by not dividing by 2.

[4]

Question 7

7 The position vectors of the points A and B, relative to an origin O, are given by

$$\overrightarrow{OA} = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$$
 and $\overrightarrow{OB} = \begin{pmatrix} k \\ -k \\ 2k \end{pmatrix}$,

where k is a constant.

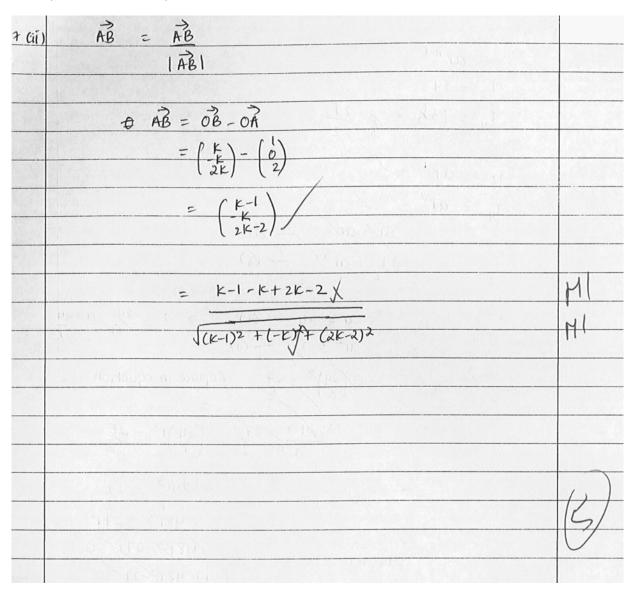
- (i) In the case where k = 2, calculate angle AOB.
- (ii) Find the values of k for which \overrightarrow{AB} is a unit vector. [4]

7	$\overrightarrow{OA} = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} \overrightarrow{OB} = \begin{pmatrix} k \\ -k \\ 2k \end{pmatrix}$		
	$ (i) \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ -2 \\ 4 \end{pmatrix} = 10 $	M1	Use of $x_1x_2 + y_1y_2 + z_1z_2$
	$= \sqrt{5} \times \sqrt{24} \cos \theta$ $\to \theta = 24.1^{\circ}$	M1 M1 A1 [4]	Product of 2 moduli All connected correctly. co
	(ii) $\overrightarrow{AB} = \begin{pmatrix} k-1 \\ -k \\ 2k-2 \end{pmatrix}$ allow each cpt \pm	M1	Correct for either AB or BA .
	$(k-1)^{2} + k^{2} + (2k-2)^{2}$ $\to 6k^{2} - 10k + 4 = 0$ $\to k = 1 \text{ or } \frac{2}{3}$	M1 A1 A1 [4]	Sum of 3 squares (doesn't need =1) Correct quadratic co

Paper 1

7. 0	
i) $\overrightarrow{OR} = 1\rangle$ $\overrightarrow{OB} = 2\rangle$	
$\left \begin{array}{c} 0 \end{array}\right $	
2/ 4/	
a.b-2+0+8=10	
$4 \cos \theta = a \cdot h$ $ a b $ $ a = \sqrt{ a + o^2 + 2^2} = \frac{1}{2}$	J5
$ b = \sqrt{2^2 + (2)^2 + 42} = 0$	Tu
(as 0 = 10 15 \(\bar{\pi} \bar{\pi} \)	
J5 J24	
. 10	1/
0 = (0s 0.913	9
· 0 = 24.1	
Angle AOB = 24.1°	
$i\frac{1}{2k} = 2 \begin{pmatrix} k \\ -k \end{pmatrix} - \begin{pmatrix} k - 1 \\ -k \end{pmatrix}$ $2k \begin{pmatrix} 2 \\ 2k \end{pmatrix} = 2k - 2 \begin{pmatrix} k - 1 \\ -k \\ 2k \end{pmatrix}$	

Example candidate response 1, continued


	unitvector = a+b+c	
	$\sqrt{a^2+b^2+c^2}$	
	=(k-1)+(-k)+(2k-2)	
	$\sqrt{(k-1)^2 + (-k)^2 + (2k-2)^2}$	
2		
(, ,	= K-1-k+2k-2	
	$\sqrt{(k-1)(k-1) + k^2 + (2k-2)(2k-2)}$	
		Magazin
	$\frac{2k-3}{\sqrt{k^2-k-k+1+k^2+4k^2-4k-4k+4}}$	HARREN
	1 x2-K-K+1+ x2+ 4k2-4K-4k+4	
	= 2t - 3	
	$\sqrt{6k^2-10k+5}$	95.3
		30
		1×30
	$6k^2 - 10k + 5 = 0$	2×15
		5×6
c	K >0	
10		
1		

Item marks awarded: (i) = 4/4; (ii) = 2/4

Total mark awarded = 6 out of 8

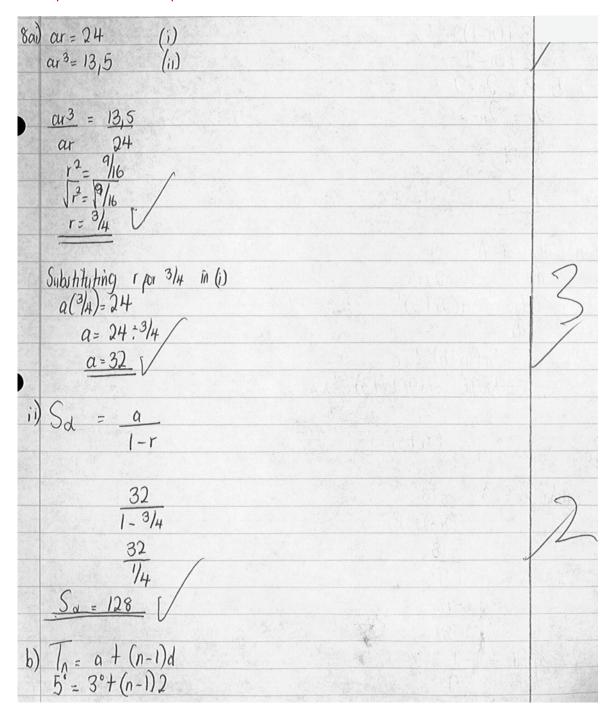
Paper 1

Question No.	
7(1)	Angle AOB = LOA OA.OB Jensels = 182019
	A COSIC = 851/10 1 10 1 1 10 1 10 10 10 10 10 10 10 10
	< cosn/. · · ·
	$\overrightarrow{OA} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ of 80 9 -11 2 - bridge \rightarrow 6800 4
	2(1-sin24) = 35 mil 3-15
	OB = (-K). ACH-II JUNES (COMMIS) + B
	if K=2
	if $k=2$. $0\vec{6} = \begin{pmatrix} 2 \\ -2 \\ 4 \end{pmatrix}$
2 ()	0 - 13 10 p 2 1 p 6 p 2 8 (C -)
	Angle $\triangle B = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ -2 \\ 4 \end{pmatrix}$
	$\frac{10^{2} + (2)^{2} + (2)^{2}}{1^{2} + (2)^{2} + (2)^{2} + (2)^{2}}$
	\$ (05 8 u = 3 5) nsu 1
10	(4.15) = 2-2+84200
MO	1442 = 15/x 1/4188 = 36820764
	13 × 13 × 13 × 13 × 13 × 13 × 13 × 13 ×
	= 1111806=1480128-8 42=8-3
	120 MS 1 LUGARS - 6 4 = 5
	- SSIN 201 - 351N 811 + 3 = 0
	$\cos A\delta B = \frac{1}{15}$
	$AOB = \cos(\sqrt{15})$
	2510.81 8 8 8 5 4 5 88 WAY) - 1 (SINSUL 8) = 0
100	(-Sinan+a) (28n8n-1) = 0 .

Item marks awarded: (i) = 3/4; (ii) = 2/4

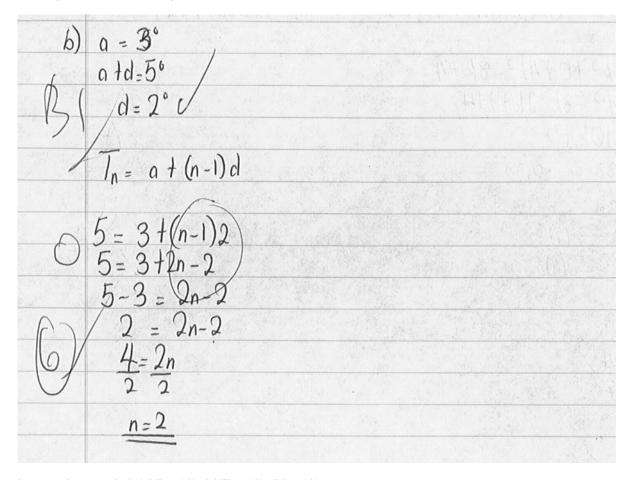
Total mark awarded = 5 out of 8

Examiner comment – 1 and 2


- (i) Candidates of all ability levels showed a very good understanding of the scalar product of two vectors and invariably the three available method marks were obtained. Both of these candidates were comfortable in their approach to the question. Unfortunately, candidate 2 made a common numerical error when the scalar product was evaluated as 8 instead of 10. This arose from assuming that " $-2 \times 0 = -2$ ".
- (ii) This part of the question proved to be difficult and correct solutions from candidates at all levels were rare. Both of these candidates recognised that vector $\overrightarrow{AB} = \mathbf{b} \mathbf{a}$ and proceeded to obtain an expression in terms of k. Both candidates then introduced the modulus of vector \overrightarrow{AB} , but neither realised that this modulus, on its own, was equal to 1. Candidate 1 isolated the modulus, but set it to 0 instead of 1, whilst candidate 2 made no further progress.

Question 8

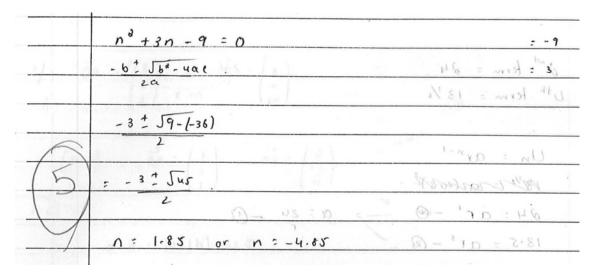
8 (a) In a geometric progression, all the terms are positive, the second term is 24 and the fourth term is $13\frac{1}{2}$. Find


- (ii) the sum to infinity of the progression. [2]
- (b) A circle is divided into n sectors in such a way that the angles of the sectors are in arithmetic progression. The smallest two angles are 3° and 5° . Find the value of n. [4]

8	(a) (i) $ar = 24$, $ar^3 = 13\frac{1}{2}$ Eliminates a (or r) $\rightarrow r = \frac{3}{4}$ $\rightarrow a = 32$	B1 M1	Both needed Method of Solution.
	(ii) sum to infinity = $32 \div \frac{1}{4} = 128$	A1 [3] M1A1√ [2]	Correct formula used. \checkmark on value of r
	(b) $a = 3, d = 2$ $\frac{n}{2}(6 + (n-1)2) (= 360)$ $\rightarrow 2n^2 + 4n - 720 = 0$ $\rightarrow n = 18$	B1 M1 A1 A1 [4]	Correct value for d Correct S_n used. no need for 360 here. Correct quadratic co

Paper 1

Example candidate response - 1, continued


Item marks awarded: (a)(i) = 3/3; (a)(ii) = 2/2; (b) = 1/4

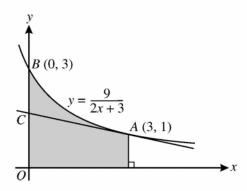
Total mark awarded = 6 out of 9

	P = P = Q + Q	
8 a)	2 d d term = 24.	ś
	4th term = 13 1/2	
	-3-19-1-36)	
	Un = arn-1	· Comment
	Birralhows.	
	24: ar' -@ -> a: 24 -0	BI
6-14	13.5 = ar3 - @	1
Inde	Replace 1 in @ . 13.5 = 24 x 13"	mt
	ect Name 10 = 13.5 - 24.45	
		1/2
	kplou in (8)	
		ne W
1	a = 724 2008	part to the
2	Write the question with the state of the sta	1
	a= 24 x (510.3) = 73.8	
	Doctor of the ship	001
	Fill in the whole approximate the second sec	1
10	s). Sp = 77.8 -34.7.	-
	1-510-5	-
	(1)/=(1xxx0) (1)/4 c (4/5/4x 49 20-	- 1
6)	132 = 30	131
	2 nd = 5° d= 2 - Sn: 1/2 n { Da+(n-1) d}	00 1
	8 - 1/2 n { d(3) + (n-1) 2 }	1
9	Up: 3 + pn-1001 8 = 1/2 n (6+2n-2)	
	84005	
	$q_n = 2n-1$ $n^2+3n-9=0$	

Paper 1

Example candidate response - 2 continued

Item marks awarded: (a)(i) = 2/3; (a)(ii) = 1/2; (b) = 2/4


Total mark awarded = 5 out of 9

Examiner comment – 1 and 2

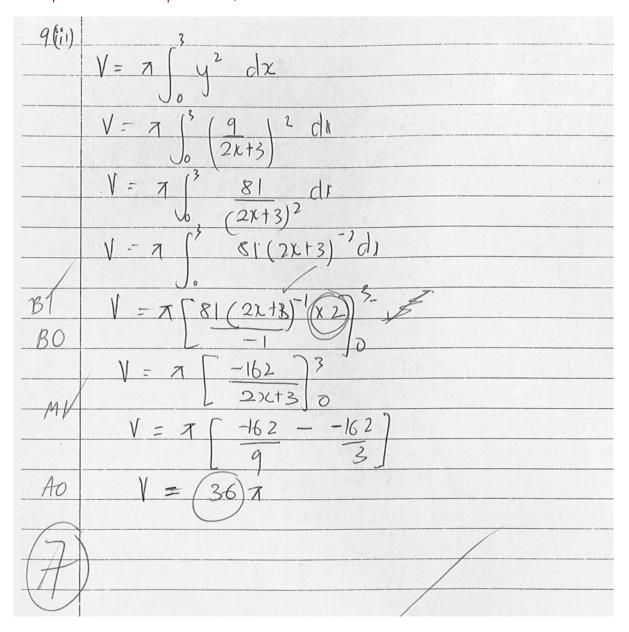
- (a) (i) Most candidates were able to write down two correct equations relating a and r, i.e. "ar = 24" and "ar = 13.5". The algebra needed to eliminate either a or r often proved difficult and candidate 2 made the algebraic error of quoting $r^2 = 13.5 24$, instead $13.5 \div 24$. Candidate 1 correctly obtained the first term as 32.
 - (ii) Both candidates recognised that the sum to infinity was given by the formula $S_{\infty} = \frac{a}{1-r}$. Candidate 1 obtained a correct answer (128), but although there was a follow through accuracy mark available, this could not be awarded to candidate 2 since the value of |r| was greater than 1. Candidates should be aware that the sum to infinity does not exist if |r| > 1 and that this implies that some error has been made in their earlier working.
- (b) This question caused most candidates a lot of problems. Most realised that the common difference of the arithmetic series was 2° and the majority, including candidate 2, realised the need to use the sum, S_n , of n terms given by the formula $S_n = \frac{1}{2}n(2a + (n-1)d)$. Candidate 1 used the nth term instead of the sum of n terms, but neither candidate, along with almost half of the total intake, realised that the sum of the n terms was 360° .

Question 9

9

The diagram shows part of the curve $y = \frac{9}{2x+3}$, crossing the y-axis at the point B(0, 3). The point A on the curve has coordinates (3, 1) and the tangent to the curve at A crosses the y-axis at C.

- (i) Find the equation of the tangent to the curve at A. [4]
- (ii) Determine, showing all necessary working, whether C is nearer to B or to O. [1]
- (iii) Find, showing all necessary working, the exact volume obtained when the shaded region is rotated through 360° about the *x*-axis. [4]

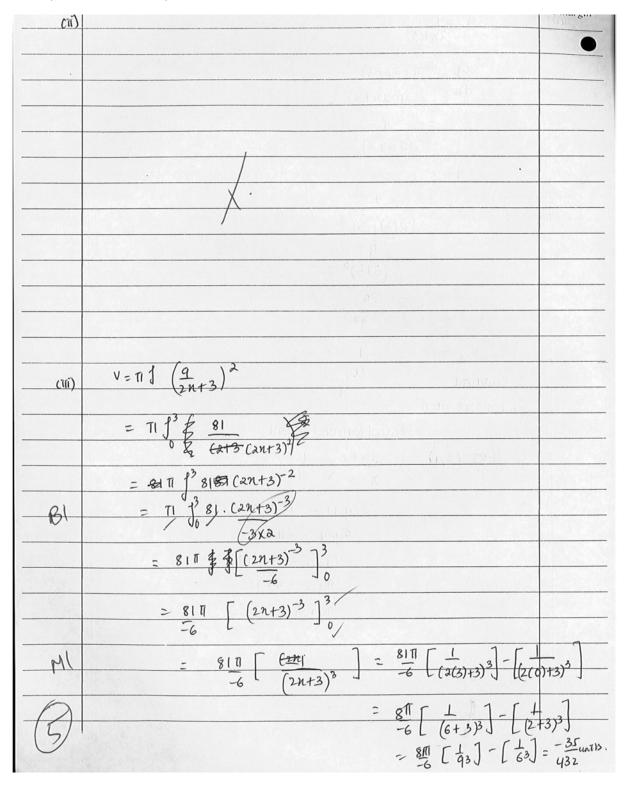

Mark scheme

9	$y = \frac{9}{2x+3} \qquad A(3,1) \qquad B(0,3)$ (i) $\frac{dy}{dx} = \frac{-9}{(2x+3)^2} \times 2$ $\to m = -\frac{2}{9}$ $\to y - 1 = -\frac{2}{9}(x-3)$	B1 B1 M1 A1 * [4]	Correct without the $\times 2$. For $\times 2$, independent of first part. Correct form of tan - numerical dy/dx For his m following use of dy/dx . (normal \rightarrow max 2/4, no calculus 0/4)
	(ii) Meets the y-axis when $x = 0$, $y = 1\frac{2}{3}$ This is nearer to B than to O.	B1 [1]	Sets x to 0 in his tangent. The $1\frac{2}{3}$ and part (i) must be correct.
	(iii) Integral of $\frac{81}{(2x+3)^2} = \frac{-81}{2x+3} \div 2$ Uses limits 0 to 3 $\rightarrow \frac{-9}{2} - \frac{-81}{6} = 9\pi$	B1 B1 M1 A1 [4]	Correct without the \div 2. For \div 2, Use of limits with integral of y^2 only no π – max 3 /4. Use of area - 0/4,

Paper 1

6		
9)	$y = \frac{9}{2x+3}$	
<u>(i)</u>		
	$y = 9(2x+3)^{-1}$	
	$\frac{dy = -9(2x+3)^{-2} \times 2}{dx = -18}$	
	$d\lambda = \frac{-18}{(2\lambda + 3)^2}$	
	At the pt (3,1).	
	$\frac{dy}{dx} = \frac{-18}{2(3)+3}^{2}$	
	CI [2(3)+3]	
	$= -\frac{2}{9}$	
	9.	
	Equation of tangent; m=-2 (3,1)	
	1 0 9	
	4-1 = -2	
	$\frac{9-1}{x-3} = -2$	
	9y - 9 = -2x + 6.	
	9y = -2x+15	
		11
	$y = -\frac{2x}{9} + \frac{15}{9}$	-
(Pa)	1128 +15	
(1)	y=-2x +15 9 9	/
	At y-axis, x=0	
	y = -2(0) + 15	
	9=15/9	
	y = 1,667	BI
	C is nearer to B.	/ 01
	or C 15 Hearer LOS.	

Example candidate response - 1, continued


Item marks awarded: (i) = 4/4; (ii) = 1/1; (iii) = 2/4

Total mark awarded = 7 out of 9

Paper 1

901)	y = 9 2n+3	
	2n+3	
	dy = 9 (22+3)-1	
	$\frac{dy}{dn} = \frac{9(2n+3)^{-1}}{2}$	
		15/
	$= -9 $ $(2n+3)^2$	
	n = 3	
	= -9	
	(2(3)+3) 2	
	$= -\frac{9}{(6+3)^2}$	
	= -9	
	92	
	= -9	
	$= -\frac{9}{81}$ Gradient = - $\frac{1}{2}$	(1)()
	of tangent at A.	
	Equation of tangent	
	(OI (3,1)	21
	n-3 8 9/	7
	9(y-1) = -1(n-3)	
	9y-9 = -n+3	
	9y = -n+3+9	
	9y+n=12 E	

Example candidate response – 2, continued

Item marks awarded: (i) = 3/4; (ii) = 0/1; (iii) = 2/4

Total mark awarded = 5 out of 9

Examiner comment - 1 and 2

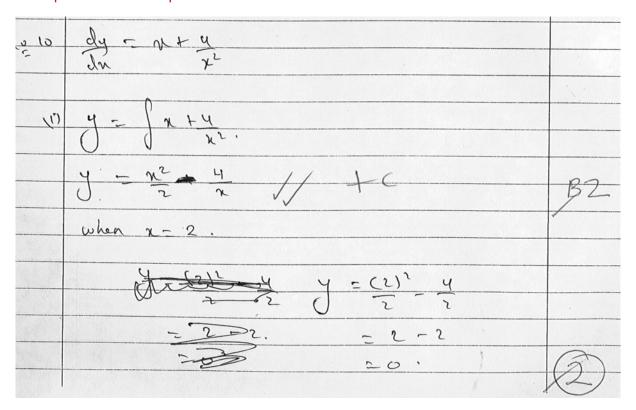
- (i) This question was a source of high marks for many candidates and both of these candidates attained reasonable marks. Candidate 1 had a completely correct response, whereas candidate 2 did not realise that the equation was composite and omitted to multiply by 2 in the differentiation. The final accuracy mark was follow-through and this was obtained by both candidates.
- (ii) This part of the question, worth just 1 mark, required a correct answer to part (i). Surprisingly, many candidates did not realise the need to check whether the value of *y* at which the tangent meets the *y*-axis was greater or less that 1½ (half way between 0 and 3). Candidate 2 made no attempt at the question, whereas candidate 1 obtained a correct deduction.
- (iii) Generally, this was a source of high marks for most candidates. These two scripts highlight two of the errors that occurred in a large number of scripts. Candidate 1 correctly realised that the integral of $(2x+3)^{-2}$ required $\frac{(2x+3)^{-1}}{-1}$, but then multiplied by 2 instead of reversing the process in part (i) and

dividing by 2. Candidate 2 made an error with the integral of $(2x + 3)^{-2}$ by expressing this as $\frac{(2x + 3)^{-3}}{-3}$, but correctly divided by 2. Use of the limits 0 to 3 was correct, but the final answers were incorrect in both cases.

Question 10

- 10 A curve is defined for x > 0 and is such that $\frac{dy}{dx} = x + \frac{4}{x^2}$. The point P(4, 8) lies on the curve.
 - (i) Find the equation of the curve. [4]
 - (ii) Show that the gradient of the curve has a minimum value when x = 2 and state this minimum value. [4]

Mark scheme


10	$\frac{\mathrm{dy}}{\mathrm{dx}} = x + \frac{4}{x^2} \text{ and } P(4, 8)$		
	(i) $y = \frac{x^2}{2} - \frac{4}{x} + (c)$	B1 B1	co.co (ignore $+c$ at this stage)
	Uses $(4, 8) \rightarrow c = 1$	M1 A1 [4]	Uses the point after integration for c
	(ii) $\frac{d^2y}{dx^2} = 1 - \frac{8}{x^3}$	В1	Со
	= 0 when $x = 2$	B1	Sets to 0 + solution or verifies and states a conclusion (stationary or min)
	\rightarrow gradient of 3	В1	Allow for $x = 2$ into dy/dx .
	$d/dx(1 - \frac{8}{x^3}) = \frac{24}{x^4} \rightarrow +ve \rightarrow Min.$	B1 [4]	Any valid method - 3rd differential +ve 2nd diff goes -0+, or 1st goes >3,3,>3

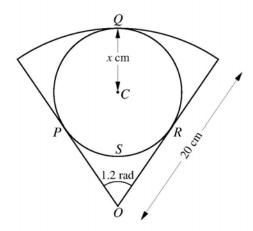
Paper 1

(10)	dy = x+ 4 P(4,8).
(10)	$\frac{dy}{dx} = x + 4x^{2}$ $\frac{dx}{dx} = x + 4x^{2}$
(i)	Equation of when = $y = \int \frac{dy}{dx} dx$
	dx
	$\int \frac{dy}{dx} = \int \frac{x^{-2}}{4x} dx = \left[\frac{x^2 + 4x^{-1} + c}{2} \right]$
	$= \frac{x^2 - 4 + c}{x}$
	Take P (4,8)
	whon x sy day
	$\frac{y = x^2 - 4 + c}{2}$
	1 2 x
	$8 = \frac{(4)^2 - 4 + C}{2}$
	$ \begin{cases} 8 = 8 - 1 + C. \\ C = 1 \end{cases} $
4	
	: Equation of curve is $y = \frac{12^2 - 4 + 1}{2}$
(ii)	$d^{2}Y = 1 + 4x - 2x^{-3}$
81	$\frac{d^{2}Y}{dx^{2}} = 1 + 4x - 2x^{-3}$ $\frac{d^{2}Y}{dx^{2}} = 19 - 8$
-	
61	when $R = 2$, $\frac{d^2Y}{d^2} = 1 - 8 = 0$
1	Since $\frac{d^2y}{dx^2}$ is positive, there is a minimum value
10	Dince of is positive, there is a minimum value

Item marks awarded: (i) = 4/4; (ii) = 2/4

Total mark awarded = 6 out of 8

Item marks awarded: (i) = 2/4; (ii) = 0/4


Total mark awarded = 2 out of 8

Examiner comment – 1 and 2

- (i) This part proved to be one of the more straightforward questions on the paper and candidates from all ability levels scored well. Candidate 1 offered a perfectly correct solution. Candidate 2 integrated correctly, but made the mistake of omitting the constant of integration. Neither candidate made the error of thinking that the equation of the curve is the same as the equation of the tangent.
- (ii) This proved to be a difficult question, with only a small minority obtaining full marks. Candidates reading the question carefully would have realised that the question did not ask for the maximum or minimum values of x, but requested the maximum or minimum value of the $\frac{d^2y}{dx^2}$ to 0, instead of setting $\frac{dy}{dx}$ to 0, and looking at the sign of $\frac{d^3y}{dx^3}$ to determine whether the value of the gradient was positive or negative. If candidates had labelled the gradient $\frac{dy}{dx}$ as m and looked at $\frac{dm}{dx}$, then at $\frac{d^2m}{dx^2}$, they would have been more successful. Neither of the candidates obtained the easy mark obtained by substituting x = 2 into $\frac{dy}{dx}$ to obtain a value of 3. Candidate 2, like many candidates, made no attempt at the question. Candidate 1 obtained a correct expression for $\frac{d^2y}{dx^2}$ and deduced that this was 0 when x = 2.

Question 11

11

The diagram shows a sector of a circle with centre O and radius 20 cm. A circle with centre C and radius x cm lies within the sector and touches it at P, Q and R. Angle POR = 1.2 radians.

- (i) Show that x = 7.218, correct to 3 decimal places. [4]
- (ii) Find the total area of the three parts of the sector lying outside the circle with centre C. [2]
- (iii) Find the perimeter of the region *OPSR* bounded by the arc *PSR* and the lines *OP* and *OR*. [4]

Mark scheme

11	(i) $OQ = x + OC = 20$	D.	11 1 1 (20)
		B1	Used somewhere – needs "20".
	$\sin 0.6 = \frac{x}{OC} \rightarrow OC = \frac{x}{\sin 0.6}$	M1	Use of trig in 90° triangle
	$x + \frac{x}{\sin 0.6} = 20 \rightarrow x = 7.218$	M1 A1 [4]	Soln of linear equation. (answer given, ensure there is a correct method)
	(ii) Area = $\frac{1}{2}$. $20^2 \times 1.2 - \pi \times 7.218^2$ = 76.3	M1 A1 [2]	Use of $\frac{1}{2}r^2\theta$ - needs $r=20$ and $\theta=1.2$ co
	(iii) Angle $PCR = \pi - 1.2$ Arc $PR = 7.218 \times (\pi - 1.2) = (14.01)$	B1 M1	Correct use of trig or Pythagoras
	$OP = OR = \frac{x}{\tan 0.6}$ $\rightarrow \text{ Perimeter of 35.1 cm}$	M1 A1 [4]	со

	Are $PSR = 4.33$. $0 = 0.6$ 0.6 7.2174 (proved)	0
(j i).	Area of Sector OPOR = $1 \times 20 \times 20 \times 1.2 = 240 \text{ cm}^2$ Area of Circle = $277 \text{ r} = 2 \times 77 \times 7.218$ = $45.352 \times 45.4 \text{ cm}^2$.'. Area of three parts of sector lying outside the Circle = $240 - 45.4 = 194.6 \text{ cm}^2$	M
(iù)	Perimeter of region OPSR = Arc PSR + OP + OR. Arc PSR = 7.218 x 0.6 = 4.3308 24.33	M'
	OP = OR = 20 - 7.218 = 12.782 Porimeter of region OPSR= 4.83 + 12.782 + 12.782 = 28.894 $29.9 cm 4$	2

Item marks awarded: (i) = 0/4; (ii) = 1/2; (iii) = 1/4

Total mark awarded = 2 out of 10

Paper 1

11/.		
		0
	Axaber Setux	
8)	Free of Sectur = 1/2 17 12	
	(1,4) 4 tags 628.32	
	Area of Circle: UK12	0
	= 394·32	
	Total area of the 3 parts outside: 620.32-327.35	
	= 300.97	
	1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	
iii)	BR (77) PO => (con 0.6 = 9-218	ml
		/
	= 11.34. PO => 2 = 10.55	
	Pormoiss	
	perimeter of OPSR = 10.55 + 10.55 + 11.34	

Item marks awarded: (i) = 0/4; (ii) = 0/2; (iii) = 1/4

Total mark awarded = 1 out of 10

Examiner comment - 1 and 2

- (i) This proved to be a very difficult part, requiring the use of trigonometry in triangle OCR and realising that CR = x and that OC = 20 x. Only a small minority of candidates were successful. Neither of these two candidates was able to make a correct start.
- (ii) This proved to be more successful and both these candidates were not concerned about their failure to cope with part (i). Both candidates realised the need to subtract the area of a circle from the area of a sector. Unfortunately, candidate 2 quoted incorrect formulae for both areas. Candidate 1 obtained a correct answer for the area of the sector, but then used the formula for the circumference instead of the area of a circle.
- (iii) Again, this proved to be a difficult part of the question. Two basic errors affected the solutions, the failure to realise that the angle PCR was $\pi-1.2$ radians and that the length of OR or OP required the use of trigonometry in triangle OCR. Candidate 1 used the formula " $s = r\theta$ " with the correct radius, but an incorrect angle (0.6 radians) and then assumed that OP = OR = 20 7.218. Candidate 2 correctly used trigonometry to find OP = 10.55, but then attempted to find the arc length using the formula $\frac{1}{2}\pi^2$.