

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

0123456789

MATHEMATICS 9709/02

Paper 2 Pure Mathematics 2

For examination from 2020

SPECIMEN PAPER

1 hour 15 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 50.
- The number of marks for each question or part question is shown in brackets [].

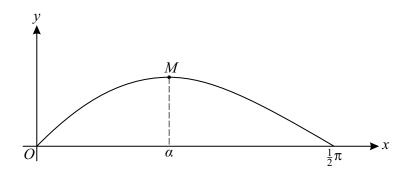
This document has **14** pages. Blank pages are indicated.

© UCLES 2017 [Turn over

	Find the value of a .	
b)	When a has this value, find the remainder when $p(x)$ is divided by $(x + 3)$.	
b)	When a has this value, find the remainder when $p(x)$ is divided by $(x + 3)$.	
b)	When a has this value, find the remainder when $p(x)$ is divided by $(x + 3)$.	
b)	When a has this value, find the remainder when $p(x)$ is divided by $(x + 3)$.	
b)		
b)	When a has this value, find the remainder when $p(x)$ is divided by $(x + 3)$.	
b)		
b)		
b)		
b)		
b)		

3	It is o	iven	that a	is a	nositive	constant.
J	IL IS E	,1 / (11	mai u	15 a	positive	Constant.

(a) (i)	Sketch on a single diagram the graphs of $y = 2x - 3a $ and $y = 2x + 4a $.	[2]
---------	--	-----


(ii) State the coordinates of each of the points where each graph meets an axis. [1]

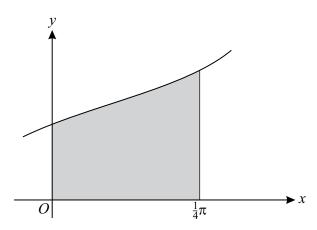
	ng your answer correct to 3 significant figures.	Sorre me equation 5
•••••		
•••••		
•••••		

]	Express y in terms of x , in a form not involving logarithms. [4]
•	
•	
•	
•	
•	

5

The diagram shows the curve $y = \frac{\sin 2x}{x+2}$ for $0 \le x \le \frac{1}{2}\pi$. The *x*-coordinate of the maximum point *M* is denoted by α .

dx	nd show that α	juution tun 23	230 1 1.	


(b)	Show by calculation that α lies between 0.6 and 0.7.	[2]
(c)	Use the iterative formula $x_{n+1} = \frac{1}{2} \tan^{-1}(2x_n + 4)$ to find the value of α correct to 3 decimal place	es.
	Give the result of each iteration to 5 decimal places.	[3]
		••••
		••••
		••••
		••••
		••••
		••••

	parametric equations of a curve are $x = e^{2t}$, $y = 4te^{t}$.	
(a)	Show that $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2(t+1)}{\mathrm{e}^t}$.	

						• • • •
•••••				•••••	•••••	
		•••••				
•••••				•••••	•••••	
				•••••		
•••••	• • • • • • • • • • • • • • • • • • • •		,			,
•••••						

	$\int_0^{\frac{1}{4}\pi} (\tan^2 x + \cos^2 x) \mathrm{d}x.$
	$\int_0^{\infty} (\tan^2 x + \cos^2 x) \mathrm{d}x.$

(b)

The region enclosed by the curve $y = \tan x + \cos x$ and the lines x = 0, $x = \frac{1}{4}\pi$ and y = 0 is shown in the diagram.

Find the exact volume of the solid produced when this region is rotated completely about th x -axis. [4]

Additional page

If you use the must be clearly	following lined p shown.	age to complet	e the answer(s	s) to any quest	ion(s), the ques	stion number(s)
•••••						
		•••••	•••••			•••••
•••••	•••••		••••••		•••••	
•••••			•••••		•••••	
•••••			•••••		•••••	
		•••••	•••••		•••••	•••••
•••••	•••••					

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.