

Cambridge International AS & A Level

CANDIDATE NAME								
CENTRE NUMBER					CANDIDAT NUMBER	ΓΕ		

0123456789

MATHEMATICS 9709/04

Paper 4 Mechanics For examination from 2020

SPECIMEN PAPER 1 hour 15 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.
- Where a numerical value for the acceleration due to gravity (g) is needed, use $10 \,\mathrm{m\,s^{-2}}$.

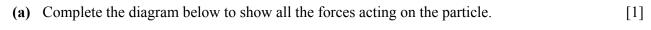
INFORMATION

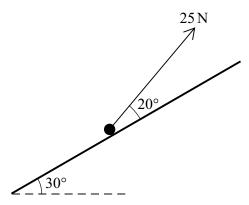
- The total mark for this paper is 50.
- The number of marks for each question or part question is shown in brackets [].

This document has **14** pages. Blank pages are indicated.

© UCLES 2017 [Turn over

(a)	Find the greatest height above the ground reached by P .	[
(b)	Find the total time from projection until P returns to the ground.	
(b)	Find the total time from projection until P returns to the ground.	
(b)	Find the total time from projection until <i>P</i> returns to the ground.	
(b)	Find the total time from projection until <i>P</i> returns to the ground.	
(b)	Find the total time from projection until <i>P</i> returns to the ground.	
(b)		


2

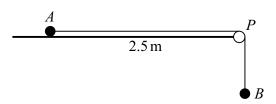

)	The car is moving along a straight level road at a constant speed of $32 \mathrm{m s}^{-1}$.	
	Find, in kW, the rate at which the engine of the car is working.	
		••••••
		•••••
)	The car travels at a constant speed down a hill inclined at an angle of θ° to the hor $\sin \theta^{\circ} = \frac{1}{20}$, with the engine working at 31.5 kW.	izontal, w
)	$\sin \theta^{\circ} = \frac{1}{20}$, with the engine working at 31.5 kW.	izontal, wl
)		izontal, wł
)	$\sin \theta^{\circ} = \frac{1}{20}$, with the engine working at 31.5 kW.	izontal, wh
)	$\sin \theta^{\circ} = \frac{1}{20}$, with the engine working at 31.5 kW.	izontal, wh
)	$\sin \theta^{\circ} = \frac{1}{20}$, with the engine working at 31.5 kW. Find the speed of the car.	
)	$\sin \theta^{\circ} = \frac{1}{20}$, with the engine working at 31.5 kW.	
)	$\sin \theta^{\circ} = \frac{1}{20}$, with the engine working at 31.5 kW. Find the speed of the car.	
	$\sin \theta^{\circ} = \frac{1}{20}$, with the engine working at 31.5 kW. Find the speed of the car.	
)	$\sin \theta^{\circ} = \frac{1}{20}$, with the engine working at 31.5 kW. Find the speed of the car.	
)	$\sin \theta^{\circ} = \frac{1}{20}$, with the engine working at 31.5 kW. Find the speed of the car.	
	$\sin \theta^{\circ} = \frac{1}{20}$, with the engine working at 31.5 kW. Find the speed of the car.	
	$\sin \theta^{\circ} = \frac{1}{20}$, with the engine working at 31.5 kW. Find the speed of the car.	
	$\sin \theta^{\circ} = \frac{1}{20}$, with the engine working at 31.5 kW. Find the speed of the car.	
	$\sin \theta^{\circ} = \frac{1}{20}$, with the engine working at 31.5 kW. Find the speed of the car.	

a j	Find the speed of <i>B</i> after this collison.	
		•••••
		•••••
h	ere B collides with C . In this collison these two spheres coalesce to form an obj	ect D.
PII	Find the speed of D after this collision.	

••••••						
•••••		•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •
G1 .1 .		01 : .:		. 11		. 20 41
Show that	the total loss	s of kinetic ene	ergy in the sys	tem due to the	e two collisions	3 1S 38.4 J.
		•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	• • • • • • • • • • • • • • • • • • • •
•••••		•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	• • • • • • • • • • • • • • • • • • • •

A particle of mass 20 kg is on a rough plane inclined at an angle of 30° to the horizontal. A force of magnitude 25 N, acting at an angle of 20° above a line of greatest slope of the plane, is used to prevent the particle from sliding down the plane. The coefficient of friction between the particle and the plane is μ .

Find the least possible value of μ .	[5]


5

hor The	ar of mass 1200 kg is pulling a trailer of mass 800 kg up a hill inclined at an angle of sin ⁻¹ (0.1) to the izontal. The car and the trailer are connected by a light rigid tow-bar which is parallel to the road. It driving force of the car's engine is 2500 N and the resistances to the car and trailer are 300 N and DN respectively.
(a)	Find the acceleration of the system and the tension in the tow-bar. [4]

time.	ie time, in s	seconds, b	erore un	e systen	n comes	to rest	and the	iorce in	the tow-	-bar duri
	•••••	••••••	•••••		•••••	• • • • • • • • • • • • • • • • • • • •	•••••		••••••	••••••
••••••		•••••	•••••		•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••		•••••
•••••			•••••		•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••		•••••
			•••••					•••••		
	,									
•••••			•••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	••••••	
•••••			•••••		•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••		
•••••			•••••		•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••		•••••
			•••••							
						•••••				

		y = 5t(t-2)	for $0 \le t \le 4$,	
			for $4 \leqslant t \leqslant 14$,	
			for $14 \leqslant t \leqslant 20$,	
whe	ere k is a constant.			
(a)	Find <i>k</i> .			[1]
(h)	Sketch the velocity–time	e graph for 0 < t < 2	20	[3]
(D)	Sketch the velocity-thin	$c \text{ graph for } 0 \leqslant i \leqslant 2$	20.	[ء]
(c)	Find the set of values of	\hat{t} for which the acce	eleration of P is positive.	[2]
(c)	Find the set of values of	<i>t</i> for which the acce	eleration of P is positive.	[2]

•••••	•••••
•••••	•••••
•••••	

Two particles A and B, of masses 0.8 kg and 0.2 kg respectively, are connected by a light inextensible string. Particle A is placed on a horizontal surface. The string passes over a small smooth pulley P fixed at the edge of the surface, and B hangs freely. The horizontal section of the string, AP, is of length 2.5 m (see diagram). The particles are released from rest with both sections of the string taut.

	Given that the surface is smooth, find the time taken for A to reach the pulley.
••	
••	
••	
• •	
••	
••	
••	
••	
• -	
•	

[4	method to find v.	Use an energy m

Additional page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.								
•••••								
		•••••	•••••			•••••		
•••••	•••••		••••••		•••••			
•••••			•••••		•••••			
•••••			•••••		•••••			
		•••••	•••••		•••••	•••••		
•••••	•••••							

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.