MARK SCHEME for the May/June 2009 question paper

for the guidance of teachers

9231 FURTHER MATHEMATICS

9231/02

Paper 2, maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

UNIVERSITY of CAMBRIDGE International Examinations

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL – May/June 2009	9231	02

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL – May/June 2009	9231	02

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR–2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL – May/June 2009	9231	02

Qu No	Mark Scheme Details			Part Mark	Total
1	Find tangential acceleration, $l d^2 \theta / dt^2$:	$l\cos\theta d\theta/dt = l\cos\theta\sin\theta$	M1 A1		
	Find radial acceleration, $l (d\theta/dt)^2$:	$l\sin^2\theta$	M1 A1		
	Combine to give $l d\theta/dt$ (ignore magnitudes): A.G.	$l\sqrt{(\cos^2\theta + \sin^2\theta)}\sin\theta = l\sin\theta$	B1	5	[5]
2	Find frequency ω using $T = 2\pi/\omega$:	$\omega = 2\pi / 0.0225$			
		$[=800\pi/9 = 279.25]$	M1 A1		
	Find v_{max} using $v_{max} = a\omega$:	$v_{max} = 0.0105 \omega; = 2.93[2]$	M1 A1; A1	5	
	Find v using $v^2 = \omega^2 (a^2 - x^2)$	$v = \omega \sqrt{(0.0105^2 - 0.0055^2)}$			
	or $\omega t = \sin^{-1} (x/a) = [0.5513], v = a\omega \cos \omega t$:	[t = 0.00197], v = 2.50 A.G.	M1 A1	2	[7]
3	Use perp. axes theorem for both discs (or lamina):	$I_{2a} = m_{2a}a^2$ or $I_a = \frac{1}{4}m_aa^2$	M1		
	Combine to find MI of lamina about diameter (or <i>T</i>):	$I = I_{2a} - I_a \ [= a^2 (m_{2a} - \frac{1}{4}m_a)]$	M1		
	Use par. axes theorem for lamina (or both discs):	$I_T = I + 4ma^2$	M1		
	Find masses of both discs in terms of <i>m</i> :	$m_{2a} = 4m/3$ and $m_a = m/3$	B1		
	Combine to find MI of lamina about <i>T</i> :	$I_T = a^2 (4 - \frac{1}{4}) m/3 + 4ma^2$			
		$= 5ma^2/4 + 4ma^2 = 21ma^2/4$ A.G.	A1	5	
	Relate initial KE to change in PE at highest pt:	$\frac{1}{2} I_T \omega^2$ and $4mga$	M1 A1		
	Find set of values [or max. value] of ω (A.E.F.):	$\omega < \sqrt{(32g/21a)}$			
		or $1.23\sqrt{(g/a)}$ or $3.90/\sqrt{a}$	A1	3	[8]
4	Find R_A by taking moments about C for system:	$1.4R_A = 1.0 \times 14, R_A = 10$ A.G.	M1 A1	2	
	Deduce by taking moments about O for sphere:	$F_B = F_C$ A.G.	B1		
	Resolve horizontally for system:	$F_A = F_C$ A.G.	B1	2	
	Find any F by e.g. vertical resolution for AB	$F_B = 14 - R_A = 4$	M1 A1		
	or taking moments about B for AB:	$F_A = (0.8 R_A - 0.4 \times 14)/0.6 = 4$	(M1 A1)		
	Find R_B by e.g. hor. resolution for rod or sphere:	$R_B = F_A \text{ or } F_C \ [= 4]$	M1		
	Find R_C by e.g. vert. resolution for sphere or system:	$R_C = 36 + F_B \text{ or } 50 - R_A = 40$	M1 A1		
	Find μ_{min} :	$\mu_{min} = \max\{F_A/R_A, F_B/R_B, F_C/R_C\}$	M1		
		$= \max\{4/10, 4/4, 4/40\} = 1$	A1	7	[11]

	Pag	e 5	Mark Scheme: Tea GCE A LEVEL – I		Syllabus 9231	Paper 02	
<u> </u>	•						
Qu No	Mark S	Scheme De	tails			Part Mark	Total
5	(i)	Find m	ax. speed of <i>B</i> using elasticity:	$v = e_1 u \le u [or < u]$	A.G. M1 A	1 2	
	(ii)	Use co	nservation of momentum:	$m_1 u = m_2 v \leq m_2 u$	A.G. M1 A	1 2	
		Equate	speeds normal to wall, e.g.:	$V\sin\alpha = ev\sin 60^\circ \ or$	$v ev \sqrt{3/2}$ M1		
		Equate	speeds parallel to wall, e.g.:	$V\cos\alpha = v\cos 60^\circ$ or	<i>v</i> /2 M1		
		Elimin	ate α by squaring and adding:	$V^2 = v^2 (e^2 \sin^2 60^\circ + \cos^2 60^\circ) + \cos^2 60^\circ + \cos^2 $	M1 ($M1$) ($M1$)		
		Relate	KEs:	$\frac{1}{2}mV^2 = \frac{1}{3}(\frac{1}{2}mv^2)$	B1		
		Hence	eliminate speeds to find e:	$e^2 = (\frac{1}{3} - \frac{1}{4})/\frac{3}{4} = \frac{1}{9},$	$e = \frac{1}{3}$ M1 A	1	
		Show t	hat B leaves wall at 30°: A.G.	$\tan \alpha = e \tan 60^\circ = 1/\sqrt{3},$	$\alpha = 30^{\circ}$ M1 A	1 8	[12]
6	Find s	ample me	an:	$\overline{x} = \frac{1}{2}(481 + 509) = 4$	195 M1 A	1	
	Use of	r imply co	nfidence interval formula:	$\overline{x} \pm ts/\sqrt{n}$, any t or z [[s = 29.9] M1		
	Find 9	0% interv	al semi-width:	$(t_{19, 0.95} / t_{19, 0.975})$ 14	M1		
	(1.725	5/2·086 or	1.645/1.96 lose A1 only)	= (1.729/2.093) 14 = 1	11·6 A1		
	Hence	90% con	fidence interval:	[483·4, 506·6] or [483,	507] A1	6	[6]
7	(i)	State c	hoice of line with reason (A.E.F.):	y depends on x so choose	e y on x B1		
		Find co	befficient b in regression line for y :	$b = (66 \cdot 1 - 3 \cdot 25 \times 268/$	10) /		
				(1.2625 –	$3.25^{2}/10)$		
				=-21/0.20625 = -101	I ⋅8 <i>or</i> −102 M1 A	1	
		Find e	quation of regression line:	y = b(x - 0.325) + 26.8			
				= 59.9 - 102 x	M1 A	1	
		SR: M	11 A1 for finding x on y :	x = 0.563 - 0.00888 y	(M1 A	A1) 5	
	(ii)	Find <i>x</i>	when $y = 0$:	59.9/102 = 0.587 or 0.587	88 or 0.59 M1 A	1	
		SR: If	using eqn of x on y:	0.563	(B1)		
		Valid o	comment on reliability:	OK since point just outsi	ide range		
				or OK as $r \approx -1$ or $ r \approx 1$	(A.E.F.) B1	3	[8]

			ge 6 Mark Scheme: Teachers' version Sy GCE A LEVEL – May/June 2009		Paper 02	
Qu No	Mark Scheme De	tails			Part Mark	Total
8	Consider differe	ences $N - A$ (or $A - N$):	-10 4 0 -2 -9 1 5	-5 -7 M1		
	Estimate mean a	and population variance (to 3 sf):	$\overline{x} = -23/9 \ [= -2.556; a$	allow +]		
		and	$s^2 = (301 - 23^2/9) / 8$			
			$= 30.28 \text{ or } 5.503^2$			
	(allow biased)	l de la construcción de	$(26.91 \text{ or } 5.188^2)$	M1 A	A1	
	Use valid formu	ala (M1 needs <i>n</i> consistent with <i>s</i>):	$\overline{x} \pm ts/\sqrt{n}$ for any t	M1		
	Use correct tabu	ılar <i>t</i> value:	$t_{8, 0.95} = 1.86[0]$	*B1		
	Evaluate confid	ence interval (dep *B1):	-2.56 ± 3.41 or [-5.97,	0·86] *A1	6	
	Use valid argun	nent consistent with interval:	0 lies in interval (A.E	M1 M1		
	State conclusion	h (dep *A1 apart from rounding):	Yes, supports claim (A.I	E.F.) A1	2	[8]
9	State (at least) r	ull hypothesis (A.E.F.):	H ₀ : Sydney popn. has sam	ne freq.		
			[0.38, 0.10, 0.03, 0.49]	B1		
	Calculate expec	ted values:	76 20 6 98	M1 A	A1	
	Calculate value	of χ^2 (M1 even if cells combined):	$\chi^2 \approx 8.5[2]$	M1 *	'A1	
	Compare with c	onsistent tab. value (to 2 dp):	$\chi_{3, 0.95}^2 = 7.815 [\chi_2^2 = 5]$	·991] *B1\	\checkmark	
	Correct conclus	ion (dep *A1, *B1):	Sydney does not conform	(AEF) B1	7	
	Find smallest si	ze <i>n</i> with expected values ≥ 5 [or >]:	$n \ge 5/0.03 = 166.7$ so n_{\min}	is 167 M1 A	A1 2	[9]

	Page 7	/	Mark Scheme: Teach GCE A LEVEL – May		Syllab 9231		Paper 02	
Qu No	Mark Sche	eme Det	ails				Part Mark	Total
10		<i></i>	o number of hits:	P(T > t) = P(hits in t mins)	<i>,</i>	M1		
			n distribution: n F(<i>t</i>) of <i>T</i> :	= $P_0(0.8t) = e^{-0.8t}$ A.G. F(t) = $P(T < t) = 1 - e^{-0.8t}$		M1 A1 B1		
	Different	iate to :	find $f(t)$ in required form:	$f(t) = 0.8 e^{-0.8 t}$		B1	5	
	EITHER:	State	or imply required probability:	$S = \sum_{i=1}^{50} T_i$		M1		
		State	or use mean of S:	$\mu_S = 50 (1/0.8) = 62.5$		A1		
		State	or use variance of S:	$\sigma_s^2 = 50 (1/0.8)^2 = 78.1[$	25]	A1		
		Justif	y use of Normal approxn. (A.E.F.):	By Central Limit Theorem				
				or 50 is large or $50 > e.g$. 30	B1		
		Evalu	ate approximate probability (A.E.F):	$1 - \Phi((60 - \mu_S)/\sigma_S)$		M1		
				$=\Phi(0.283); = 0.611$		A1; A1		
	OR:	State	or imply required probability:	P(hits in 60 mins < 50) [all	$ow \le 50$]	(M1)		
		State	or use mean:	$\mu = 60 \times 0.8 = 48$		(A1)		
		State	or use variance:	$\sigma^2 = 60 \times 0.8 = 48$		(A1)		
		Justif	y use of Normal approxn. (A.E.F.):	48 is large or 48 > e.g. 15		(B1)		
		Evalu	ate approximate probability (A.E.F):	$\Phi((49.5-\mu)/\sigma)$		(M1)		
				$=\Phi(0.216[5]); = 0.586$		(A1; A1) 7	
		S.R.	Omission of continuity correction:	$\Phi((50-\mu)/\sigma) = 0.614 \text{ ea}$	arns B1			[12]

	Page 8	ge 8 Mark Scheme: Teachers' version GCE A LEVEL – May/June 2009		Syllabus 9231	Paper 02		
Qu No	Mark Scheme De	tails			Part Mark	Total	
11 Either	Find tension <i>T</i> :		T = 4mgx/a	B1			
		s law of motion to <i>B</i> :	$m \mathrm{d}^2 x/\mathrm{d}t^2 = mg - T$	M1			
	Combine:		$d^2 x/dt^2 = -(g/a)(4x-a)$	A.G. A1	3		
	Substitute e.g.	$y = x - \frac{1}{4}a$ and rearrange:	$\mathrm{d}^2 y/\mathrm{d}t^2 = -\left(4g/a\right)y$	M1 A1	l		
	State centre of r	notion, or derive from $y = 0$:	$x_c = \frac{1}{4} a$	A1	3		
	Find x when A s	starts to slip using $F = \mu R$:	$T = \frac{1}{3}mg, x_s = a/12$	M1 A1	l		
	Valid use of SH	M eqn to find time t_s to slipping:	$y = y_{max} \cos \omega t \ or \ y_{max} \sin \omega t$	n <i>wt</i> M1			
	EITHER: Valio	d use of cosine form:	$y_s = y_{max} \cos \omega t_s$	M1			
	OR: Valio	d use of sine form:	$t_s = t_1 - t_2 , \ y_{max} = y_{max} \sin t_s$	ωt_1			
			$y_s = y_{max} \sin \omega t$	t ₂ (M1)			
	Substitute for y	s, Ymax:	$y_s / y_{max} = (x_c - x_s) / x_c$	M1			
			$= (a/6)/(a/4) = \frac{2}{2}$	Á A1			
	Find t_s :		$t_s = (\cos^{-1} \frac{2}{3}) / \omega$				
			or $(\frac{1}{2}\pi - \sin^{-1}\frac{2}{3})/\omega$	M1			
	Substitute $\omega = 2$	$\mathbb{R}\sqrt{(g/a)}$ and evaluate:	$t_s = 0.421 \sqrt{(a/g)}$	Al	8	[14]	
11	State hypothese	s:	$H_0: \mu_E = \mu_W, H_1: \mu_E \neq \mu_W$	μ_W B1	1		
OR	State assumption	n [A.E.F.]:	Two populations have Norr	mal			
			distns. and common var	iance B1			
	Estimate comme	on variance:	$\sigma^2 = (5 \times 0.0231 + 4 \times 0.01)$	95)/9 M1			
			$= 0.0215 \ or \ 0.1473^2$	A1			
	Use correct tabu	lar value of <i>t</i> :	$t_{9, 0.975} = 2.26[2]$	B1			
	Formulate rejec	tion region (with any <i>t</i> ; allow >):	$ \overline{x}_{E} - \overline{x}_{W} \ge t\sigma \sqrt{1/6} +$	1/5) M1			
			= 0.201	A1			
	Compare actual	sample means with region:	0.253 > 0.201				
	or compare calc	culated t with tabular t:	2.85 > 2.26[2]	M1 A1			
	Consistent conc	lusion (A.E.F.; dep values above):	Mean acidity levels do diff	er Al	9		
	State condition	on <i>a</i> (with any <i>t</i> ; allow $>$ or $=$):	$\overline{x}_{E} - \overline{x}_{W} - a \ge t\sigma \sqrt{1/6}$	5 + 1/5) M1			
	Use correct tabu	lar value of <i>t</i> :	$t_{9,0.95} = 1.83[3]$	A1			
	Substitute to fin	d largest value of <i>a</i> :	$a_{max} = 0.253 - 0.163 = 0.09$	9 (2 dp) M1 A1	4	[14]	