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1 The variables x and y are such that y = −1 when x = 1 and

x2 + y2 + (dy

dx
)3 = 29.

Find the values of
dy

dx
and

d2y

dx2
when x = 1. [5]

2 The curve C has polar equation

r = a(1 − e−θ),
where a is a positive constant and 0 ≤ θ < 2π.

(i) Draw a sketch of C. [3]

(ii) Show that the area of the region bounded by C and the lines θ = ln 2 and θ = ln 4 is

1
2
a2(ln 2 − 13

32
). [4]

3 At any point (x, y) on the curve C,

dx

dt
= t

√(t2 + 4) and
dy

dt
= −t

√(4 − t2),
where the parameter t is such that 0 ≤ t ≤ 2. Show that the length of C is 4

√
2. [3]

Given that y = 0 when t = 2, determine the area of the surface generated when C is rotated through

one complete revolution about the x-axis, leaving your answer in an exact form. [4]

4 The sum S
N

is defined by S
N
=

N

∑
n=1

n5. Using the identity

(n + 1
2
)6 − (n − 1

2
)6 ≡ 6n5 + 5n3 + 3

8
n,

find S
N

in terms of N. [You need not simplify your result.] [4]

Hence find lim
N→∞ N−λ S

N
, for each of the two cases

(i) λ = 6,

(ii) λ > 6.

[3]

5 Let

I
n
= ã e

1

x(ln x)n dx,

where n ≥ 1. Show that

I
n+1

= 1
2
e2 − 1

2
(n + 1)I

n
. [3]

Hence prove by induction that, for all positive integers n, I
n

is of the form A
n
e2 + B

n
, where A

n
and

B
n

are rational numbers. [6]

© UCLES 2010 9231/11/M/J/10



3

6 The equation

x3 + x − 1 = 0

has roots α, β , γ . Use the relation x = √
y to show that the equation

y3 + 2y2 + y − 1 = 0

has roots α2, β2, γ 2. [2]

Let S
n
= αn + βn + γ n.

(i) Write down the value of S
2

and show that S
4
= 2. [3]

(ii) Find the values of S
6

and S
8
. [4]

7 The lines l
1

and l
2

have vector equations

r = 4i − 2j + λ (2i + j − 4k) and r = 4i − 5j + 2k + µ(i − j − k)
respectively.

(i) Show that l
1

and l
2

intersect. [3]

(ii) Find the perpendicular distance from the point P whose position vector is 3i − 5j + 6k to the

plane containing l
1

and l
2
. [3]

(iii) Find the perpendicular distance from P to l
1
. [4]

8 The matrix A is given by

A =  4 1 −1

−4 −1 4

0 −1 5

 .

Given that one eigenvector of A is ( 1

−2

−1

), find the corresponding eigenvalue. [2]

Given also that another eigenvalue of A is 4, find a corresponding eigenvector. [2]

Given further that ( 1

−4

−1

) is an eigenvector of A, with corresponding eigenvalue 1, find matrices P

and Q, together with a diagonal matrix D, such that A5 = PDQ. [6]
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9 (i) Write down the five fifth roots of unity. [2]

(ii) Hence find all the roots of the equation

ß5 + 16 + (16
√

3)i = 0,

giving answers in the form reiqπ , where r > 0 and q is a rational number. Show these roots on an

Argand diagram. [4]

Let w be a root of the equation in part (ii).

(iii) Show that

4

∑
k=0

(w

2
)k = 3 + i

√
3

2 − w
. [3]

(iv) Identify the root for which |2 − w | is least. [2]

10 Find the set of values of a for which the system of equations

x + 4y + 12ß = 5,

2x + ay + 12ß = a − 1,

3x + 12y + 2aß = 10,

has a unique solution. [4]

Show that the system does not have any solution in the case a = 18. [2]

Given that a = 8, show that the number of solutions is infinite and find the solution for which

x + y + ß = 1. [5]
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11 Answer only one of the following two alternatives.

EITHER

The variables ß and x are related by the differential equation

3ß2 d2ß
dx2

+ 6ß2 dß
dx

+ 6ß(dß
dx
)2 + 5ß3 = 5x + 2.

Use the substitution y = ß3 to show that y and x are related by the differential equation

d2y

dx2
+ 2

dy

dx
+ 5y = 5x + 2. [3]

Given that ß = 1 and
dß
dx

= −2
3

when x = 0, find ß in terms of x. [9]

Deduce that, for large positive values of x, ß ≈ x
1
3 . [2]

OR

The curve C has equation

y = x(x + 1)
(x − 1)2

.

(i) Obtain the equations of the asymptotes of C. [3]

(ii) Show that there is exactly one point of intersection of C with the asymptotes and find its

coordinates. [2]

(iii) Find
dy

dx
and hence

(a) find the coordinates of any stationary points of C,

(b) state the set of values of x for which the gradient of C is negative.

[6]

(iv) Draw a sketch of C. [3]
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