CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Level		
FURTHER MATHEMATICS		9231/01
Paper 1		October/November 2003
Additional materials:	Answer Booklet/Paper Graph paper List of Formulae (MF10)	3 hours
Write your Centre number, c Write in dark blue or black p You may use a soft pencil fo	nswer Booklet, follow the instruct andidate number and name on a en on both sides of the paper.	

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question. At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question. The use of a calculator is expected, where appropriate.

Results obtained solely from a graphic calculator, without supporting working or reasoning, will not receive credit.

You are reminded of the need for clear presentation in your answers.

This document consists of 4 printed pages.

1

The curve C has polar equation

$$r=\theta^{\frac{1}{2}}\mathrm{e}^{\theta^2/\pi},$$

where $0 \le \theta \le \pi$. The area of the finite region bounded by *C* and the line $\theta = \beta$ is π (see diagram). Show that

$$\beta = (\pi \ln 3)^{\frac{1}{2}}.$$
 [6]

2 Given that

$$u_n = \frac{1}{n^2 - n + 1} - \frac{1}{n^2 + n + 1},$$

find $S_N = \sum_{n=N+1}^{2N} u_n$ in terms of N. [3]

Find a number *M* such that $S_N < 10^{-20}$ for all N > M.

3 Three $n \times 1$ column vectors are denoted by \mathbf{x}_1 , \mathbf{x}_2 , \mathbf{x}_3 , and \mathbf{M} is an $n \times n$ matrix. Show that if \mathbf{x}_1 , \mathbf{x}_2 , \mathbf{x}_3 are linearly dependent then the vectors $\mathbf{M}\mathbf{x}_1$, $\mathbf{M}\mathbf{x}_2$, $\mathbf{M}\mathbf{x}_3$ are also linearly dependent. [2]

The vectors \mathbf{y}_1 , \mathbf{y}_2 , \mathbf{y}_3 and the matrix \mathbf{P} are defined as follows:

$$\mathbf{y}_1 = \begin{pmatrix} 1\\5\\7 \end{pmatrix}, \quad \mathbf{y}_2 = \begin{pmatrix} 2\\-3\\4 \end{pmatrix}, \quad \mathbf{y}_3 = \begin{pmatrix} 5\\51\\55 \end{pmatrix},$$
$$\mathbf{P} = \begin{pmatrix} 1 & -4 & 3\\0 & 2 & 5\\0 & 0 & -7 \end{pmatrix}.$$

(i) Show that $\mathbf{y}_1, \mathbf{y}_2, \mathbf{y}_3$ are linearly dependent.

[2]

[3]

(ii) Find a basis for the linear space spanned by the vectors \mathbf{Py}_1 , \mathbf{Py}_2 , \mathbf{Py}_3 . [2]

4 Given that $y = x \sin x$, find $\frac{d^2 y}{dx^2}$ and $\frac{d^4 y}{dx^4}$, simplifying your results as far as possible, and show that

$$\frac{\mathrm{d}^6 y}{\mathrm{d}x^6} = -x\sin x + 6\cos x.$$
 [3]

Use induction to establish an expression for $\frac{d^{2n}y}{dx^{2n}}$, where *n* is a positive integer. [5]

5 The integral I_n is defined by

$$I_n = \int_0^{\frac{1}{4}\pi} \sec^n x \, \mathrm{d}x.$$

By considering $\frac{d}{dx}(\tan x \sec^n x)$, or otherwise, show that

$$(n+1)I_{n+2} = 2^{\frac{1}{2}n} + nI_n.$$
 [4]

Find the value of I_6 .

6 Find the sum of the squares of the roots of the equation

$$x^3 + x + 12 = 0,$$

and deduce that only one of the roots is real.

The real root of the equation is denoted by α . Prove that $-3 < \alpha < -2$, and hence prove that the modulus of each of the other roots lies between 2 and $\sqrt{6}$. [5]

7 Find the general solution of the differential equation

$$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} + 4\frac{\mathrm{d}y}{\mathrm{d}t} + 4y = \mathrm{e}^{-\alpha t},$$

where α is a constant and $\alpha \neq 2$.

Show that if
$$\alpha < 2$$
 then, whatever the initial conditions, $ye^{\alpha t} \to \frac{1}{(2-\alpha)^2}$ as $t \to \infty$. [2]

8 Given that $z = e^{i\theta}$ and *n* is a positive integer, show that

$$z^n + \frac{1}{z^n} = 2\cos n\theta$$
 and $z^n - \frac{1}{z^n} = 2i\sin n\theta.$ [2]

Hence express $\sin^6 \theta$ in the form

$$p\cos 6\theta + q\cos 4\theta + r\cos 2\theta + s$$
,

where the constants p, q, r, s are to be determined.

[4]

Hence find the mean value of $\sin^6 \theta$ with respect to θ over the interval $0 \le \theta \le \frac{1}{4}\pi$. [5]

[Turn over

[4]

[7]

[4]

- 9 The line l_1 passes through the point A with position vector $\mathbf{i} \mathbf{j} 2\mathbf{k}$ and is parallel to the vector $3\mathbf{i} 4\mathbf{j} 2\mathbf{k}$. The variable line l_2 passes through the point $(1 + 5\cos t)\mathbf{i} (1 + 5\sin t)\mathbf{j} 14\mathbf{k}$, where $0 \le t < 2\pi$, and is parallel to the vector $15\mathbf{i} + 8\mathbf{j} 3\mathbf{k}$. The points P and Q are on l_1 and l_2 respectively, and PQ is perpendicular to both l_1 and l_2 .
 - (i) Find the length of PQ in terms of t.
 - (ii) Hence show that the lines l_1 and l_2 do not intersect, and find the maximum length of PQ as t varies. [3]
 - (iii) The plane Π_1 contains l_1 and PQ; the plane Π_2 contains l_2 and PQ. Find the angle between the planes Π_1 and Π_2 , correct to the nearest tenth of a degree. [4]
- 10 Find the eigenvalues and corresponding eigenvectors of the matrix A, where

$$\mathbf{A} = \begin{pmatrix} 6 & 4 & 1\\ -6 & -1 & 3\\ 8 & 8 & 4 \end{pmatrix}.$$
 [8]

[4]

[5]

Hence find a non-singular matrix **P** and a diagonal matrix **D** such that $\mathbf{A} + \mathbf{A}^2 + \mathbf{A}^3 = \mathbf{P}\mathbf{D}\mathbf{P}^{-1}$. [4]

11 Answer only **one** of the following two alternatives.

EITHER

The curve C has equation
$$y = \frac{5(x-1)(x+2)}{(x-2)(x+3)}$$
.

- (i) Express y in the form $P + \frac{Q}{x-2} + \frac{R}{x+3}$. [3]
- (ii) Show that $\frac{dy}{dx} = 0$ for exactly one value of x and find the corresponding value of y. [4]
- (iii) Write down the equations of all the asymptotes of *C*. [3]
- (iv) Find the set of values of k for which the line y = k does not intersect C. [4]

OR

A curve has equation $y = \frac{2}{3}x^{\frac{3}{2}}$, for $x \ge 0$. The arc of the curve joining the origin to the point where x = 3 is denoted by *R*.

- (i) Find the length of R. [4]
- (ii) Find the *y*-coordinate of the centroid of the region bounded by the *x*-axis, the line x = 3 and R.
- (iii) Show that the area of the surface generated when *R* is rotated through one revolution about the y-axis is $\frac{232}{15}\pi$. [5]