MARK SCHEME for the October/November 2010 question paper for the guidance of teachers

9231 FURTHER MATHEMATICS

9231/01
Paper 1, maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol $\sqrt{ }$ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0 .
$B 2 / 1 / 0$ means that the candidate can earn anything from 0 to 2 .
The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.
- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10 .

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL - October/November 2010	9231	01

The following abbreviations may be used in a mark scheme or used on the scripts:
AEF Any Equivalent Form (of answer is equally acceptable)
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)

CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)

CWO Correct Working Only - often written by a 'fortuitous' answer
ISW Ignore Subsequent Working
MR Misread
PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)

SOS See Other Solution (the candidate makes a better attempt at the same question)
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

MR -1 A penalty of MR-1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{ }$ " marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR-2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.
$1 \quad 1+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}=1+\left(\frac{1}{2}\left(\mathrm{e}^{2 x}-\mathrm{e}^{-2 x}\right)\right)^{2}=\frac{1}{4}\left(\mathrm{e}^{2 x}+\mathrm{e}^{-2 x}\right)^{2}$
Length $=\int_{0}^{\frac{1}{2}} \frac{1}{2}\left(\mathrm{e}^{2 x}+\mathrm{e}^{-2 x}\right) \mathrm{d} x=\frac{1}{4}\left[\left(\mathrm{e}^{2 x}-\mathrm{e}^{-2 x}\right)\right]_{0}^{\frac{1}{2}}$
$=\frac{1}{4}\left(e^{1}-\mathrm{e}^{-1}\right)-\frac{1}{4}\left(\mathrm{e}^{0}-\mathrm{e}^{0}\right)=\frac{\mathrm{e}^{2}-1}{4 \mathrm{e}} \quad \mathbf{A G}$
$2 n$th term is $\frac{1}{2}\left(\frac{1}{n}-\frac{1}{n+2}\right)$
$S_{N}=\frac{1}{2}\left[\begin{array}{l}\left(\frac{1}{N}-\frac{1}{N+2}\right)+\left(\frac{1}{N-1}-\frac{1}{N+1}\right)+\left(\frac{1}{N-2}-\frac{1}{N}\right)+\ldots \\ \left(\frac{1}{2}-\frac{1}{4}\right)+\left(\frac{1}{1}-\frac{1}{3}\right)\end{array}\right]$
M1

B1 $\sqrt{ }$
M1A1 expression simplified

M1 integrate

A1 cao
$=\frac{1}{2}\left[\frac{3}{2}-\frac{1}{N+2}-\frac{1}{N+1}\right]$
Limit $=3 / 4$
B

B1

M1 use of $\frac{\frac{1}{2} \int y^{2} \mathrm{~d} x}{A}$
M1 integrate
A1 correct
Final answer:
$\frac{3}{8}\left(\ln 2+\frac{3}{4}\right)$ or $\frac{3}{16}\left(\ln 4+\frac{3}{2}\right)$ or $\frac{3}{8} \ln 2+\frac{9}{32}$ etc (ACF) A1

A1 after cancellation
sum of terms

3 Area $=\int_{1}^{4}\left(x^{\frac{1}{2}}-x^{-\frac{1}{2}}\right) \mathrm{d} x=\left[\frac{2}{3} x^{\frac{3}{2}}-2 x^{\frac{1}{2}}\right]_{1}^{4}=8 / 3$
$\bar{y}=\frac{\frac{1}{2} \int_{1}^{4}\left(x-2+\frac{1}{x}\right) \mathrm{d} x}{A}=\frac{\frac{1}{2}\left[\frac{x^{2}}{2}-2 x+\ln x\right]_{1}^{4}}{A}$

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL - October/November 2010	9231	01

$4 \quad n=0: \quad 7^{1}+5^{3}=132$ which is divisible by 44
Assume $7^{2 k+1}+5^{k+3}$ is divisible by 44
Consider $7^{2(k+1)+1}+5^{(k+1)+3}=7^{2} 7^{2 k+1}+5.5^{k+3}$
$=49\left(7^{2 k+1}+5^{k+3}\right)-44.5^{k+3}$
which is divisible by 44
Alternative solution for final three marks:
Consider $\left(7^{2 k+3}+5^{k+4}\right)-\left(7^{2 k+1}+5^{k+3}\right)$
$=48\left(7^{2 k+1}+5^{k+3}\right)-44.5^{k+3}$
which is divisible by 44
$I_{6}=1-30\left(1-12\left(1-2 I_{0}\right)\right)=0.0177$

OR
$I_{0}=1-\cos 1$
$I_{2}=2 \cos 1-1$
$I_{4}=13-24 \cos 1$
$I_{6}=0.0177$
Accept decimal versions
$6 \quad\left(\begin{array}{cccc}1 & 2 & -1 & \alpha \\ 0 & -1 & 1 & -2 \alpha \\ 0 & -3 & 4 & -2-2 \alpha \\ 0 & 1 & -3 & -2\end{array}\right) \rightarrow\left(\begin{array}{cccc}1 & 2 & -1 & \alpha \\ 0 & -1 & 1 & -2 \alpha \\ 0 & 0 & 1 & 4 \alpha-2 \\ 0 & 0 & 0 & 6 \alpha-6\end{array}\right)$
$\operatorname{Dim}=4 \Rightarrow \alpha \neq 1 \quad \mathbf{A G}$
$a+2 b-c=0$
$2 a+3 b-c=0$
Show $a=b=c=0$
$2 a+b+2 c=0$
$b-3 c=0$

Linearly independent and $\operatorname{dim} R(T)$ not 4 : basis
$a+2 b-c=p$
$2 a+3 b-c=1$ Attempt to find a, b, c in terms of q or p
$2 a+b+2 c=1$
$b-3 c=q$
$6 p+q=3$
Alternative solution:
Use row operations as in (i)
Final column $\left(\begin{array}{c}p \\ 1-2 p \\ 4 p-2 \\ 6 p+q-3\end{array}\right)$
$6 p+q=3$
A1

A1

M1

M1 integrate by parts again
A1
M1

B1
in appropriate form convincing argument

M1A1
(use of RF)
cao

M1 in appropriate form
A1 convincing argument

M1

M1A1
attempt to solve

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL - October/November 2010	9231	01

7
$y=\frac{1}{x+1} \quad \therefore x=\frac{1-y}{y}$
Gives $6 y^{3}-7 y^{2}+3 y-1=0 \quad \mathbf{A G}$
M1
A1
$n=1$: given expression $=$ sum of roots $=7 / 6$
B1
$n=2: \sum \frac{1}{(\alpha+1)^{2}}=\left(\sum \frac{1}{(\alpha+1)}\right)^{2}-2 \sum{ }^{\prime \prime} \alpha \beta^{\prime \prime}=\frac{13}{36}$
B1

From cubic in y,
$6 \sum\left(\frac{1}{\alpha+1}\right)^{3}-7 \cdot \frac{13}{36}+3\left(\frac{7}{6}\right)-3=0$
$\sum\left(\frac{1}{\alpha+1}\right)^{3}=73 / 216$
A1

LHS $=\sum\left(\frac{(\beta+1)(\gamma+1)(\alpha+1}{(\alpha+1)^{3}}\right)$
$=\left(\frac{1}{6}\right)^{-1} \times \frac{73}{216}$
$=73 / 36 \quad \mathbf{A G}$

8 (i) $1+\sin \theta=3 \sin \theta \Rightarrow \sin \theta=\frac{1}{2}$

$$
\left(\frac{3}{2}, \frac{\pi}{6}\right) \text { and }\left(\frac{3}{2}, \frac{5 \pi}{6}\right)
$$

(ii)

(iii) Subtract integrands

$$
\begin{aligned}
& 2 \times 1 / 2 \int_{\pi / 6}^{\pi / 2}(3-4 \cos 2 \theta-2 \sin \theta) \mathrm{d} \theta \\
& =[3 \theta-2 \sin 2 \theta+2 \cos \theta]_{\pi / 6}^{\pi / 2} \\
& =\pi \quad \mathbf{A G}
\end{aligned}
$$

Alternative:
Area inside C_{1} :

$$
\begin{aligned}
& 2 \times \frac{1}{2} \int_{\pi / 6}^{\pi / 2} 9 \sin ^{2} \theta \mathrm{~d} \theta=\frac{9}{2}\left[\theta-\frac{1}{2} \sin 2 \theta\right]_{\pi / 6}^{\pi / 2} \\
& =\frac{9}{2}\left(\frac{\pi}{3}+\frac{\sqrt{3}}{4}\right)
\end{aligned}
$$

M1
M1

A1 (both)

B1 circle
B1 cardioid behaviour at origin
B1 cardioid closed and symmetry

A1

Area inside C_{2} :

$$
\begin{aligned}
& 2 \times \frac{1}{2} \int_{\pi / 6}^{\pi / 2} 1+2 \sin \theta+\frac{1}{2}(1-\cos 2 \theta) \mathrm{d} \theta \\
& =\left[\frac{3 \theta}{2}-2 \cos \theta-\frac{1}{4} \sin 2 \theta\right]_{\pi / 6}^{\pi / 2} \\
& =\left(\frac{\pi}{2}+\frac{9 \sqrt{3}}{8}\right)
\end{aligned}
$$

Subtraction
Required area $=\pi \mathbf{A G}$
$9 \quad(3-\lambda)[(2-\lambda)(3-\lambda)-1]+1(-(3-\lambda))=0$
$(3-\lambda)(\lambda-1)(\lambda-4)=0$
$\lambda=1,3,4$
$\left(\begin{array}{ccc}3-\lambda & -1 & 0 \\ -1 & 2-\lambda & -1 \\ 0 & -1 & 3-\lambda\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$
Solve for $\lambda=1:(1,2,1)$
Solve for $\lambda=3:(1,0,-1)$
Solve for $\lambda=4:(1,-1,1)$
$\mathbf{M}=\left(\begin{array}{ccc}1 & 1 & 1 \\ 2 & 0 & -1 \\ 1 & -1 & 1\end{array}\right)$
M1A1
A1
A1

B1 $\sqrt{ } \quad$ eigenvectors as columns (except $\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$)
$\mathbf{D}=\left(\begin{array}{ccc}-1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 8\end{array}\right)$

$$
\text { M1A1 } \sqrt{ } \mathrm{ft} \text { on eigenvalues }
$$

$10 \quad \cos 5 \theta=c^{5}-10 c^{3} s^{2}+5 c s^{4}$
$\sin 5 \theta=5 c^{4} s-10 c^{2} s^{3}+s^{5}$
$\tan 5 \theta=\frac{t^{5}-10 t^{3}+5 t}{1-10 t^{2}+5 t^{4}} \quad$ AG
$\tan 5 \theta=0 \Rightarrow \theta=\frac{n \pi}{5}$
Solutions $\tan \frac{n \pi}{5}$ for $n=1,2,3,4$
Roots $\pm \tan \frac{\pi}{5}, \pm \tan \frac{2 \pi}{5}$
Product of these roots $=5$
$\tan \frac{\pi}{5} \tan \frac{2 \pi}{5}=\sqrt{5}$

M1A1 use of de Moivre for $(c+i s)^{5}$

A1

M1A1 intermediate step needed

M1
A1 justify values of n
B1

M1
A1
$11 z^{\prime}=y+x y^{\prime}$
B1
$z^{\prime \prime}=2 y^{\prime}+x y^{\prime \prime}$
B1
Obtain result B1

Auxiliary equation: $m^{2}+4=0: m= \pm 2 i$ M1
CF: $A \cos 2 x+B \sin 2 x$
PI: $z=a x^{2}+b x+c$
Differentiate twice and substitute M1
$a=2, b=0, c=3$
GS: $z=A \cos 2 x+B \sin 2 x+2 x^{2}+3$
$y=0, x=\frac{1}{2} \pi:(z=0)$ gives $A=\frac{\pi^{2}}{2}+3$ A1
A1 $\sqrt{ }$ B1
$z^{\prime}=-2 A \sin 2 x+2 B \cos 2 x+4 x$ M1
$y^{\prime}=-2, x=\frac{\pi}{2}:\left(z^{\prime}=-\pi\right)$ gives $B=\frac{3 \pi}{2}$ A1
$y=\frac{1}{x}\left(\left(\frac{\pi^{2}}{2}+3\right) \cos 2 x+\frac{3 \pi}{2} \sin 2 x+2 x^{2}+3\right)$

12 EITHER

(i) $y^{\prime}=0 \Rightarrow\left(x^{2}-2 x+\lambda\right)(2 x+2 \lambda)-\left(x^{2}+2 \lambda x\right)(2 x-2)=0$ M1
$\Rightarrow \ldots \Rightarrow(\lambda+1) x^{2}-\lambda x-\lambda^{2}=0$
Hence at most 2 values of x and at most 2 stationary points A1
(ii) For 2 real distinct roots, $\lambda^{2}>4(\lambda+1)\left(-\lambda^{2}\right)$
$\lambda^{2}(5+4 \lambda)>0 \therefore \lambda>-\frac{5}{4} \quad \mathbf{A G}$
(iii) Vert. asymptotes when $x^{2}-2 x+\lambda=0$
$\mathrm{b}^{2}-4 \mathrm{ac}>0 \Rightarrow 4-4 \lambda>0$
For two vert. asymp. $\lambda<1$
A1
(iv) (a) $y=0 \Rightarrow x^{2}+2 \lambda x=0$
$\Rightarrow x=0$ or -2λ
M1
(b) $y=1: x=\frac{\lambda}{2 \lambda+2}$
(v) (a) $\lambda<-2$: no stat points: 2 vert. asymp

B1
B1
3 branches completely correct shape

B1 max, min, horiz asymp
B1 correct shape

Page 9	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL - October/November 2010	9231	01

OR

Normal to plane: $(2,3,4) \times(-1,0,1)=(3,-6,3)$
r. $(1,-2,1)=d$ and point $(2,1,4)$
$d=4 x-2 y+z=4$
Alternative:
$x=2+2 \lambda-\mu$
$\left.\begin{array}{l}y=1+2 \lambda \\ z=4+4 \lambda+\mu\end{array}\right\} \quad x+z=6+6 \lambda$
$z=4+4 \lambda+\mu$
$\therefore x+z=6+2(y-1)$
$\therefore x-2 y+z=4$
$x-4 y+5 z=12$
$x-2 y+z=4$ Solve by eliminating one variable
Use parameter and express all 3 variables in terms of it
e.g. $x=3 t-4, y=2 t-4, z=t$
$\mathbf{r}=(-4,-4,0)+t(3,2,1)$
Alternative:
Direction of line $=\left(\begin{array}{c}1 \\ -2 \\ 1\end{array}\right) \times\left(\begin{array}{c}1 \\ -4 \\ 5\end{array}\right)=t\left(\begin{array}{l}3 \\ 2 \\ 1\end{array}\right)$
Find any point on line e.g. $\left(\begin{array}{c}-4 \\ -4 \\ 0\end{array}\right),\left(\begin{array}{l}2 \\ 0 \\ 2\end{array}\right)$ etc.
$\therefore \mathbf{r}=\left(\begin{array}{c}-4 \\ -4 \\ 0\end{array}\right)+t\left(\begin{array}{l}3 \\ 2 \\ 1\end{array}\right)$
Line $l: \mathbf{r}=(a, 2 a+1,-3)+\alpha(3 c,-3, c)$
Plane: $x-2 y+z=4$
Distance A to plane:
$\left|\frac{a-2(2 a+1)-3-4}{\sqrt{6}}\right|=\frac{15}{\sqrt{6}}$
$3 a+9=15$
$a=2$

$$
\sin \theta=\frac{3 c+6+c}{\sqrt{6} \sqrt{9 c^{2}+9+c^{2}}}
$$

$$
\therefore \frac{4 c+6}{\sqrt{6} \sqrt{9+10 c^{2}}}=\frac{2}{\sqrt{6}}
$$

$$
6 c^{2}-12 c=0: c=2
$$

(Penalise only once for negative values.)

M1A1
M1
A1
substitute point into plane eqn

M1A1
M1
A1

M1
M1
A1 or equivalent
[3]

M1A1

B1

M1
M1 correct use of modulus sign
A1

M1A1

M1 solve for c
A1

