UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Level

MARK SCHEME for the October/November 2011 question paper for the guidance of teachers

9231 FURTHER MATHEMATICS

9231/11 Paper 1, maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	e 2 Mark Scheme: Teachers' version		Paper
	GCE A LEVEL – October/November 2011	9231	11

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL – October/November 2011	9231	11

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF	Any Equivalent Form (of answer is equally acceptable)
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO	Correct Working Only – often written by a 'fortuitous' answer
ISW	Ignore Subsequent Working
MR	Misread
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)
sos	See Other Solution (the candidate makes a better attempt at the same question)
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR −1 A penalty of MR −1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR−2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4	Page 4 Mark Scheme: Teachers' version		Paper
	GCE A LEVEL – October/November 2011	9231	11

Qu No	Commentary	Solution	Marks	Part Mark	Total
1	(N.B. Not α, β, γ)	Let roots be α , α , and β .			
	Writes down sum of roots,	$(1) 2\alpha + \beta = 0$	M1		
	sum of products in pairs	$(2) 2\alpha\beta + \alpha^2 = p$	A1		
	and product of roots.	$(3) \alpha^2 \beta = -q$	A1		
		From (1) $\beta = -2\alpha$			
	Eliminates β (or α).	$(2) \Rightarrow -4\alpha^2 + \alpha^2 = p \Rightarrow p = -3\alpha^2$			
		$(3) \Rightarrow -2\alpha^3 = -q \Rightarrow q = 2\alpha^3$	M1		
	Equates power of α (or β)	$\alpha^6 = \left(-\frac{p}{3}\right)^3 = \left(\frac{q}{2}\right)^2 \Rightarrow 4p^3 + 27q^2 = 0 $ (AG)	A1	5	[5]
2	Finds a × b	$\begin{vmatrix} i & j & k \\ 3 & 2 & -1 \\ 4 & -3 & 2 \end{vmatrix} = \mathbf{i} - 10\mathbf{j} - 17\mathbf{k}$	M1 A1		
	Finds area of base.	$\frac{1}{2}\sqrt{1^2 + (-10)^2 + (-17)^2} = \frac{1}{2}\sqrt{390} $ (= 9.87)	A1	3	
	Attempts to find height	Height = $\frac{(3i - j - k).(i - 10j - 17k)}{\sqrt{1^2 + (-10)^2 + (-17)^2}} = \frac{30}{\sqrt{390}}$ (= 1.519)	M1		
	Finds volume	$\frac{1}{3} \times \frac{1}{2} \sqrt{390} \times \frac{30}{\sqrt{390}} = 5$	A1	2	[5]

Page 5	Page 5 Mark Scheme: Teachers' version		Paper
	GCE A LEVEL – October/November 2011	9231	11

Qu No	Commentary	Solution	Marks	Part Mark	Total
3	Proves base case.	$H_n: \frac{d^n}{dx^n} (e^x \sin x) = 2^{\frac{n}{2}} e^x \sin \left(x + \frac{n\pi}{4}\right)$			
		$\frac{d}{dx}(e^x \sin x) = \sin x e^x + e^x \cos x$	M1		
		$= \sqrt{2}e^x \left(\frac{\sin x}{\sqrt{2}} + \frac{\cos x}{\sqrt{2}}\right) = 2^{\frac{1}{2}}e^x \sin\left(x + \frac{\pi}{4}\right)$			
		\Rightarrow H ₁ is true.	A1		
	States inductive hypothesis.	Assume H_k is true :	B1		
	Proves inductive step.	$\frac{d^{k+1}}{dx^{k+1}}(e^x \sin x) = 2^{\frac{k}{2}} \left\{ e^x \sin\left(x + \frac{k\pi}{4}\right) + e^x \cos\left(x + \frac{k\pi}{4}\right) \right\}$	M1		
		$=2^{\frac{k+1}{2}}e^{x}\left\{\frac{1}{\sqrt{2}}\sin\left(x+\frac{k\pi}{4}\right)+\frac{1}{\sqrt{2}}\cos\left(x+\frac{k\pi}{4}\right)\right\}$	A1		
		$=2^{\frac{k+1}{2}}e^{x}\left\{\sin\left(x+\frac{k\pi}{4}+\frac{\pi}{4}\right)\right\}$			
		$=2^{\frac{k+1}{2}}e^x\sin\left(x+\frac{(k+1)\pi}{4}\right)$	A1		
	States conclusion.	∴ $H_k \Rightarrow H_{k+1}$ Hence true for all positive integers by PMI	A1	7	[7]

Page 6	Page 6 Mark Scheme: Teachers' version		Paper
	GCE A LEVEL – October/November 2011	9231	11

Qu No	Commentary	Solution	Marks	Part Mark	Total
4 (i)	Reduces matrix to echelon form.	$ \begin{pmatrix} 3 & 4 & 2 & 5 \\ 6 & 7 & 5 & 8 \\ 9 & 9 & 9 & 9 \\ 15 & 16 & 14 & 17 \end{pmatrix} \sim \begin{pmatrix} 3 & 4 & 2 & 5 \\ 0 & -1 & 1 & -2 \\ 0 & -3 & 3 & -6 \\ 0 & -4 & 4 & -8 \end{pmatrix} \sim \begin{pmatrix} 3 & 4 & 2 & 5 \\ 0 & -1 & 1 & -2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} $	M1A1		
	States rank,	\Rightarrow R(M) = 2.	A1		
		Basis for range space is:			
	and basis for range space.	$ \left\{ \begin{pmatrix} 3 \\ 6 \\ 9 \\ 15 \end{pmatrix}, \begin{pmatrix} 4 \\ 7 \\ 9 \\ 16 \end{pmatrix} \right\} (OE) $	A1	4	
		Alternatively:			
		$\begin{vmatrix} \mathbf{c}_1 = \begin{pmatrix} 3 \\ 6 \\ 9 \\ 15 \end{pmatrix} & \mathbf{c}_2 = \begin{pmatrix} 4 \\ 7 \\ 9 \\ 16 \end{pmatrix} & \mathbf{c}_3 = \begin{pmatrix} 2 \\ 5 \\ 9 \\ 14 \end{pmatrix} & \mathbf{c}_4 = \begin{pmatrix} 5 \\ 8 \\ 9 \\ 17 \end{pmatrix}$			
	Shows linear dependence. Finds a lin. indep. set. States rank and basis for range space.	$2\mathbf{c}_1 = \mathbf{c}_2 + \mathbf{c}_3$ and $\mathbf{c}_4 = \mathbf{c}_1 + \mathbf{c}_2 - \mathbf{c}_3 \Rightarrow \text{ lin. dep.}$ but any two e.g. \mathbf{c}_1 , and \mathbf{c}_2 are lin. indep. Hence $R(\mathbf{M}) = 2$ Basis of range space is $\{\mathbf{c}_1, \mathbf{c}_2\}$	M1 A1 A1 A1		
(ii)	Forms equations.	3x + 4y + 2z + 5t = 0 -y + z - 2t = 0	M1		
	(Gives two parameter solution.)	$(t = \lambda, z = \mu, y = \mu - 2\lambda, x = \lambda - 2\mu)$			
	States basis of null space.	Basis of null space is $ \left\{ \begin{pmatrix} 1 \\ -2 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} -2 \\ 1 \\ 1 \\ 0 \end{pmatrix} \right\} \text{ or } \left\{ \begin{pmatrix} -3 \\ 0 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ -3 \\ 1 \\ 2 \end{pmatrix} \right\} $	A1A1	3	
	(Or by reducing transpose to echelon form, or by any other valid method.).	or any two of the above four vectors.			[7]

Page 7	Page 7 Mark Scheme: Teachers' version		Paper
	GCE A LEVEL – October/November 2011	9231	11

Qu No	Commentary	Solution	Marks	Part Mark	Total
5 (i)	One mark for each side.	$3x^2 - 6y^2y' = 3y + 3xy'$	B1B1		
	Substitutes (2,1)	$12 - 6y' = 3 + 6y' \Rightarrow y' = \frac{3}{4}$	B1√	3	
(ii)	One mark for differentiating both 1 st and 3 rd terms. One mark for each of 2 nd and 4 th terms.	$6x - \{6y^2y'' + 12y(y')^2\} = 3y' + 3y' + 3xy''$	B1B1 B1		
	Substitute (2,1) and	$12 - (6y'' + \frac{27}{4}) = \frac{9}{4} + \frac{9}{4} + 6y'' \Rightarrow 12y'' = \frac{3}{4} \Rightarrow y'' = \frac{1}{16}$	B1	4	
	$y'(2) = \frac{3}{4}.$				[7]
6		$I_n = \int_0^1 x^n (1 - x)^{\frac{1}{2}} dx$			
	Integrates by parts.	$= \left[-\frac{2}{3}x^{n}(1-x)^{\frac{3}{2}} \right]_{0}^{1} + \frac{2}{3} \int_{0}^{1} nx^{n-1}(1-x)(1-x)^{\frac{1}{2}} dx$	M1A1		
	Rearranges.	$=0+\frac{2n}{3}\int_0^1 x^{n-1}(1-x)^{\frac{1}{2}}dx-\frac{2n}{3}\int_0^1 x^n(1-x)^{\frac{1}{2}}dx$	M1A1		
		$= \frac{2n}{3}I_{n-1} - \frac{2n}{3}I_n$			
	Obtains printed result.	$\Rightarrow (2n+3)I_n = 2nI_{n-1} \tag{AG}$	A1	5	
	Evaluates I_0 .	$I_0 = \int_0^1 (1-x)^{\frac{1}{2}} dx = \left[-\frac{2}{3} (1-x)^{\frac{3}{2}} \right]_0^1 = \frac{2}{3}$	B1		
	Uses reduction formula.	$I_3 = \frac{6}{9} \times \frac{4}{7} \times \frac{2}{5} \times \frac{2}{3} = \frac{32}{315}$	M1A1	3	[8]

Page 8	Page 8 Mark Scheme: Teachers' version		Paper
	GCE A LEVEL – October/November 2011	9231	11

Qu No	Commentary	Solution	Marks	Part Mark	Total
7	Vertical asymptote.	x = 2	B1	3	
	Divides by $(x-2)$	$y = x + p + 2 + \frac{2p + 5}{x - 2}$	M1		
	Oblique asymptote.	y = x + p + 2	A1	3	
	Differentiates.	$\frac{dy}{dx} = \frac{x^2 - 4x + 4 - 2p - 5}{(x - 2)^2}$	M1A1		
		$y' = 0 \Rightarrow x^2 - 4x - (2p + 1) = 0$ $B^2 - 4AC > 0 \Rightarrow 16 + 4(2p + 1) > 0$	M1		
		$B^2 - 4AC > 0 \Rightarrow 16 + 4(2p+1) > 0$	M1		
		$\Rightarrow p > -\frac{5}{2}$	A1	5	
	Sketches graph. Working to show either $x^2 - x + 1 = 0$ has no real roots, or maximum value.	Axes and (0,–0.5) marked Upper Branch with minimum. Lower with maximum below <i>x</i> -axis. (Deduct at most 1 for poor forms at infinity.)	B1 B1 B1	3	[11]

Page 9	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL – October/November 2011	9231	11

Qu No	Commentary	Solution	Marks	Part Mark	Total
8	Shows required result, using $\mathbf{A}\mathbf{e} = \lambda \mathbf{e}$.	$\mathbf{ABe} = \mathbf{A} \ \mu \mathbf{e} = \mu \mathbf{Ae} = \mu \lambda \mathbf{e} = \lambda \mu \mathbf{e}$	M1A1	2	
	States eigenvalues from leading diagonal.	Eigenvalues of C are -1, 1 and 2	B1		
	Finds eigenvectors using cross-product or equations. M1A1 for first correct and A1 for the other two.	$\lambda = -1: \mathbf{e}_1 = \begin{vmatrix} i & j & k \\ 0 & -1 & 3 \\ 0 & 2 & 2 \end{vmatrix} = \begin{pmatrix} -8 \\ 0 \\ 0 \end{pmatrix} \sim \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$	M1A1		
		$\lambda = 1: \mathbf{e}_2 = \begin{vmatrix} i & j & k \\ -2 & -1 & 3 \\ 0 & 0 & 2 \end{vmatrix} = \begin{pmatrix} -2 \\ 4 \\ 0 \end{pmatrix} \sim \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix}$			
		$\lambda = 2: \mathbf{e}_3 = \begin{vmatrix} i & j & k \\ -3 & 1 & 3 \\ 0 & -1 & 2 \end{vmatrix} = \begin{pmatrix} 1 \\ 6 \\ 3 \end{pmatrix}$	A1	4	
	Uses $\mathbf{De} = \mu \mathbf{e}$.	$\mathbf{D} \begin{pmatrix} 1 \\ 6 \\ 3 \end{pmatrix} = \begin{pmatrix} -2 \\ -12 \\ -6 \end{pmatrix} = -2 \begin{pmatrix} 1 \\ 6 \\ 3 \end{pmatrix}$	M1A1		
	States eigenvalue.	Eigenvalue is –2.	A1	3	
	Recognises that CD has an eigenvector common to C and D and	CD has an eigenvector $\begin{pmatrix} 1 \\ 6 \\ 3 \end{pmatrix}$	B1		
	states the corresponding eigenvalue.	and the corresponding eigenvalue is $-2 \times 2 = -4$.	B1√	2	[11]

Page 10	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL – October/November 2011	9231	11

Qu No	Commentary	Solution	Marks	Part Mark	Total
9 (i)	Uses mean value formula and integrates.	M.V. = $\frac{\int_0^{\ln 5} \frac{1}{2} (e^x + e^{-x}) dx}{\ln 5 - 0} = \frac{\left[\frac{1}{2} (e^x - e^{-x})\right]_0^{\ln 5}}{\ln 5}$	M1A1		
	Substitutes limits and evaluates.	$= \frac{\frac{1}{2}\left(5 - \frac{1}{5}\right)}{\ln 5} = \frac{12}{5\ln 5} (= 1.49)$	M1A1	4	
(ii)	Differentiates and finds $1 + (y')^2$.	$y' = \frac{1}{2}(e^x - e^{-x}) \Rightarrow 1 + (y')^2 = \left\{\frac{1}{2}(e^x + e^{-x})\right\}^2$	M1A1		
	Integrates and obtains result.	2 30	M1A1		
(iii)				4	
	Uses surface area formula.	$\int_{0}^{S=2\pi} \int_{0}^{\pi} \frac{1}{2} (e^{-\frac{\pi}{2}} e^{-\frac{\pi}{2}} e^{-\frac{\pi}{2$	M1		
	Integrates.	$= \frac{\pi}{2} \int_0^{\ln 5} (e^{2x} + 2 + e^{-2x}) dx$	M1		
		$= \frac{\pi}{2} \left[\frac{e^{2x}}{2} + 2x - \frac{e^{-2x}}{2} \right]_0^{\ln 5}$			
	Substitutes limits and	$= \frac{\pi}{2} \left\{ \left[\frac{25}{2} + 2 \ln 5 - \frac{1}{50} \right] - \left[\frac{1}{2} + 0 - \frac{1}{2} \right] \right\}$	A1		
	evaluates.	$= \pi \left(\frac{156}{25} + \ln 5 \right) (=24.7)$	A1	4	[12]

Page 11	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL – October/November 2011	9231	11

Qu No	Commentary	Solution	Marks	Part Mark	Total
10	C: Straight line	Closed loop through $(5,0)$ and $(1,\pi)$ Correct shape near $(1,\pi)$ Perpendicular to initial line, through $(2,0)$	B1 B1 B1	3	
		$\Rightarrow (3 + 2\cos\theta)\cos\theta = 2$			
	Forms quadratic equation in usual form.	$\Rightarrow 2\cos^2\theta + 3\cos\theta - 2 = 0 \text{ (aef)}$	M1		
		$\Rightarrow (2\cos\theta - 1)(\cos\theta + 2) = 0$			
	Solves quadratic equation.	$\Rightarrow \cos\theta = 0.5 \text{ (since } \cos\theta > 0)$	A1		
	Writes down points of intersection.	Intersections at $\left(4, \frac{\pi}{3}\right)$ and $\left(4, -\frac{\pi}{3}\right)$.	A1A1	4	
		Calling points of intersection A and B and the pole O. Required area is two congruent sectors between l and C plus triangle OAB.			
	Finds required area.	Two sectors $= 2 \times \frac{1}{2} \int_{\frac{\pi}{3}}^{\pi} (9 + 12 \cos \theta + 4 \cos^2 \theta) d\theta$	M1		
		$= \int_{\frac{\pi}{3}}^{\pi} (11 + 12\cos\theta + 2\cos 2\theta)d\theta$	A1		
		$= \left[11\theta + 12\sin\theta + \sin 2\theta\right]_{\frac{\pi}{3}}^{\pi}$	M1		
		$=\frac{22\pi}{3}-\frac{13\sqrt{3}}{2}=(11.78)$	A1		
		Triangle = $2\sqrt{3} \times 2 = 4\sqrt{3} = (6.928)$	B1		
		Total Area = $\frac{22\pi}{3} - \frac{5\sqrt{3}}{2} = (18.708 = 18.7 \text{ (3sf)})$	A1	6	[13]

Page 12	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL – October/November 2011	9231	11

Qu No	Commentary	Solution	Marks	Part Mark	Total
11	EITHER				
	Verifies that ω is a root.	$\left(\cos\frac{\pi}{5} + i\sin\frac{\pi}{5}\right)^5 + 1 = \cos\pi + i\sin\pi + 1 = 0$	B1		
	Factorises.	$(\omega^5 + 1) = (\omega + 1)(\omega^4 - \omega^3 + \omega^2 - \omega + 1) = 0$			
		$\omega \neq -1 \Rightarrow \omega^4 - \omega^3 + \omega^2 - \omega + 1 = 0$			
		$\Rightarrow \omega^4 - \omega^3 + \omega^2 - \omega = -1$	B1	2	
		$\omega = \cos\frac{\pi}{5} + i\sin\frac{\pi}{5}$			
	Finds ω^4	$\Rightarrow \omega^4 = \cos\frac{4\pi}{5} + i\sin\frac{4\pi}{5} = -\cos\frac{\pi}{5} + \sin\frac{\pi}{5}$	M1		
	and subtracts.	$\Rightarrow \omega - \omega^4 = 2\cos\frac{\pi}{5}$	A1		
	Finds ω^3	$\omega^3 = \cos\frac{3\pi}{5} + i\sin\frac{3\pi}{5}$			
	and ω^2	$\omega^{2} = \cos\frac{2\pi}{5} + i\sin\frac{2\pi}{5} = \cos\frac{3\pi}{5} - i\sin\frac{3\pi}{5}$	M1		
	and subtracts	$\omega^3 - \omega^2 = 2\cos\frac{3\pi}{5}$	A1	4	
		$-2\cos\frac{\pi}{5} - 2\cos\frac{3\pi}{5} = -1 \Rightarrow \cos\frac{\pi}{5} + \cos\frac{3\pi}{5} = \frac{1}{2}$	M1A1		
		$\cos\frac{\pi}{5}\cos\frac{3\pi}{5} = \frac{1}{4}(\omega - \omega^4)(\omega^3 - \omega^2)$	M1		
		$=\frac{1}{4}(\omega^4-\omega^3-\omega^7+\omega^6)$			
		$= \frac{1}{4}(\omega^4 - \omega^3 + \omega^2 - \omega) = -\frac{1}{4}$	A1	4	
		Equation with roots $\cos \frac{\pi}{5}$ and $\cos \frac{3\pi}{5}$ is:			
	Finds required quadratic equation.	$x^{2} - \frac{1}{2}x - \frac{1}{4} = 0$ or $4x^{2} - 2x - 1 = 0$	M1		
	Solves for <i>x</i> .	$\Rightarrow x = \frac{2 \pm 2\sqrt{5}}{8}$	M1A1		
	States required value.	$\Rightarrow \cos\frac{\pi}{5} = \frac{1+\sqrt{5}}{4} \text{(since } 0 < \cos\frac{\pi}{5} < 1\text{)}$	A1	4	[14]

Page 13	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL – October/November 2011	9231	11

Qu No	Commentary	Solution	Marks	Part Mark	Total
11	OR				
	Differentiates	$z = x^2 y \Rightarrow \frac{dz}{dx} = x^2 \frac{dy}{dx} + 2xy$	M1		
	twice.	$\Rightarrow \frac{d^2z}{dx^2} = x^2 \frac{d^2y}{dx^2} + 4x \frac{dy}{dx} + 2y$	A1		
	Rearranges LHS of DE.	$\therefore x^{2} \frac{d^{2}y}{dx^{2}} + 4x(1+x)\frac{dy}{dx} + (2+8x+4x^{2})y =$	M1		
		$\left[\left(x^2 \frac{d^2 y}{dx^2} + 4x \frac{dy}{dx} + 2y \right) + 4 \left(x^2 \frac{dy}{dx} + 2xy \right) + 4x^2 y \right]$			
		$= \frac{d^2z}{dx^2} + 4\frac{dz}{dx} + 4z = 8x^2 $ (AG)	A1	4	
	Finds and solves AQE.	$m^2 + 4m + 4 = 0 \Rightarrow (m+2)^2 = 0 \Rightarrow m = -2$	M1		
	States CF	$CF: z = Ae^{-2x} + Bxe^{-2x}$	A1		
	States form of PI.	$PI: z = ax^2 + bx + c$			
	Differentiates twice,	$\Rightarrow z' = 2ax + b \Rightarrow z'' = 2a$	M1		
	substitutes	$2a + 8ax + 4b + 4ax^2 + 4bx + 4c = 8x^2$	A1		
	and equates coefficients.	2a + 4b + 4c = 0	M1		
		8a + 4b = 0			
		4 <i>a</i> = 8			
	Solves.	a=2 $b=-4$ $c=3$	A1		
	States GS for z – x .	$z = Ae^{-2x} + Bxe^{-2x} + 2x^2 - 4x + 3$	M1		
	States GS for <i>y</i> –x.	$y = \frac{A}{x^2}e^{-2x} + \frac{B}{x}e^{-2x} + 2 - \frac{4}{x} + \frac{3}{x^2}$	A1	8	
	Considers the effect of $x \to \infty$.	As $x \to \infty$, e^{-2x} , $\frac{1}{x}$ and $\frac{1}{x^2} \to 0$	M1		
		$\therefore y \to 2$	A1	2	[14]