## MARK SCHEME for the May/June 2014 series

## 9231 FURTHER MATHEMATICS

9231/13

Paper 1, maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.



| Page 2 | Mark Scheme                 | Syllabus | Paper |
|--------|-----------------------------|----------|-------|
|        | GCE A LEVEL – May/June 2014 | 9231     | 13    |

## Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep\*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

| Page 3 | Mark Scheme                 | Syllabus | Paper |
|--------|-----------------------------|----------|-------|
|        | GCE A LEVEL – May/June 2014 | 9231     | 13    |

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

## **Penalties**

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR–2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

| Page 4 | Mark Scheme                 | Syllabus | Paper |
|--------|-----------------------------|----------|-------|
|        | GCE A LEVEL – May/June 2014 | 9231     | 13    |

| Qn &<br>Part | Solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Marks                 |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| 1            | $\alpha \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} + \beta \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + \gamma \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} = 0$<br>$2\alpha + \beta = 0 \qquad (1)$<br>$-\alpha + \beta + \gamma = 0 \qquad (2)$                                                                                                                                                                                                                                                   | M1                    |
|              | $\begin{aligned} \alpha + \beta - \gamma &= 0  (3) \\ \text{Adding (2) and (3)} \Rightarrow 2\beta = 0. \text{ In (1)} \Rightarrow \alpha = 0 \Rightarrow \gamma = 0 \text{ from (2) or (3)} \\ \textbf{a, b and c are lin. indep. and } \therefore \text{ form basis for } \mathbb{R}^3. \\ \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} + m \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + n \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 3 \\ -2 \\ 0 \end{pmatrix} \end{aligned}$ | A1<br>A1<br>[3]<br>M1 |
|              | $\Rightarrow l = 2 , m = -1 , n = 1$<br>$\Rightarrow \mathbf{d} = 2\mathbf{a} - \mathbf{b} + \mathbf{c}$<br>Alternatively for the first two marks                                                                                                                                                                                                                                                                                                                                                | A1<br>[2]             |
|              | (i) $\begin{vmatrix} 2 & 1 & 0 \\ -1 & 1 & 1 \\ 1 & 1 & -1 \end{vmatrix} = 2 \times (-2) - 0 + 0 = -4 \neq 0$                                                                                                                                                                                                                                                                                                                                                                                    | (M1A1)                |
|              | (ii) $\begin{pmatrix} 2 & 1 & 0 \\ -1 & 1 & 1 \\ 1 & 1 & -1 \end{pmatrix} \rightarrow \dots \rightarrow \begin{pmatrix} 2 & 1 & 0 \\ 0 & 3 & 2 \\ 0 & 0 & 6 \end{pmatrix}$ (OE)                                                                                                                                                                                                                                                                                                                  | (M1A1)                |
|              | (ISW if a 4 <sup>th</sup> column appears.)                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |
| 2            | $(n+1)^{2} - n^{2} = n^{2} + 2n + 1 - n^{2} = 2n + 1 \Rightarrow \text{odd.}$<br>$\frac{3}{1^{2} \cdot 2^{2}} + \frac{5}{2^{2} \cdot 3^{2}} + \frac{7}{3^{2} \cdot 4^{2}} + \dots \frac{2n+1}{n^{2}(n+1)^{2}} = \frac{2^{2} - 1^{2}}{1^{2} \cdot 2^{2}} + \frac{3^{2} - 2^{2}}{2^{2} \cdot 3^{2}} + \frac{4^{2} - 3^{2}}{3^{2} \cdot 4^{2}} + \dots \frac{(n+1)^{2} - n^{2}}{n^{2}(n+1)^{2}}$                                                                                                    | B1<br>[1]<br>M1A1     |
|              | $=1-\frac{1}{2^{2}}+\frac{1}{2^{2}}-\frac{1}{3^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\ldots+\frac{1}{n^{2}}-\frac{1}{(n+1)^{2}}$                                                                                                                                                                                                                                                                                                                                                                  | M1                    |
|              | $=1-\frac{1}{(n+1)^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A1                    |
|              | Sum to infinity =1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A1√^<br>[5]           |

| Page 5 | Mark Scheme                 | Syllabus | Paper |
|--------|-----------------------------|----------|-------|
|        | GCE A LEVEL – May/June 2014 | 9231     | 13    |

| Qn &<br>Part | Solution                                                                                                                                                                                                                                                                                                                                                                                                  | Marks                                   |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| 3            | $\phi(1) = 5 \times 5 - 1 = 24$ which is divisible by $8 \Rightarrow H_1$ is true.                                                                                                                                                                                                                                                                                                                        | B1                                      |
|              | Assume $P_k$ is true for some positive integer $k \Rightarrow \phi(k) = 8l$<br>$\phi(k+1) - \phi(k) = 5^{k+1}(4k+5) - 1 - 5^k(4k+1) + 1$<br>$= 5^k(20k+25-4k-1)$<br>$= 5^k(16k+24) = 8m$<br>$\therefore \phi(k+1) = 8(l+m)$<br>Hence, by PMI, true for all positive integers <i>n</i> . (CWO – all previous marks required.)<br>Alternatively                                                             | B1<br>M1<br>A1<br>A1<br>A1<br>A1<br>[7] |
|              | $\phi(k+1) = 5^{k+1}(4k+5) - 1$<br>= 5. (4k.5 <sup>k</sup> ) + 25.5 <sup>k</sup> - 1<br>= 5(8l - 5 <sup>k</sup> + 1) + 25.5 <sup>k</sup> - 1<br>= 40l + 20.5 <sup>k</sup> + 4<br>= 40l + 24.5 <sup>k</sup> - 4.5 <sup>k</sup> + 4<br>= 40l + 24.5 <sup>k</sup> - 4(5 <sup>k</sup> - 1)<br>= 40l + 24.5 <sup>k</sup> - 4(8l - 4k.5 <sup>k</sup> )<br>= 8l + 24.5 <sup>k</sup> + 16k.5 <sup>k</sup><br>= 8m | (M1A1)<br>(A1)<br>(A1)                  |
| 4            | Use of $r^2 = x^2 + y^2$<br>Use of $x = r \cos \theta$ and $y = r \sin \theta$ (both).<br>Obtains $r^2 = a^2 \sin 2\theta$ (AG)<br>Sketch with two loops, approximately symmetrical about $\theta = \frac{1}{4}\pi$ and $\theta = -\frac{3}{4}\pi$ .                                                                                                                                                      | B1<br>B1<br>[3]<br>B1B1<br>[2]          |
|              | $\begin{bmatrix} \frac{1}{2} \int_{0}^{\frac{1}{2}\pi} a^{2} \sin 2\theta  \mathrm{d}\theta = \left[ -\frac{a^{2}}{4} \cos 2\theta \right]_{0}^{\frac{1}{2}\pi} \text{ (LNR)}$                                                                                                                                                                                                                            | M1                                      |
|              | $=\frac{1}{2}a^2$                                                                                                                                                                                                                                                                                                                                                                                         | A1<br>(2)                               |

| Pa           | ge 6                                             | Mark Scheme                                                                                                        | Syllabus P | aper            |
|--------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------|-----------------|
|              |                                                  | GCE A LEVEL – May/June 2014                                                                                        | 9231       | 13              |
| Qn &<br>Part |                                                  | Solution                                                                                                           |            | Marks           |
| 5            | $\frac{z(z^n-1)}{z-1}$ $\cos\theta + \cos\theta$ | $\cos 2\theta + \cos 3\theta + \dots + \cos n\theta = \operatorname{Re}\left\{\frac{z(z^n - 1)}{(z - 1)}\right\}$  |            | B1<br>[1]<br>M1 |
|              |                                                  | $= \operatorname{Re}\left\{\frac{z^{\frac{1}{2}}(z^{n}-1)}{\left(z^{\frac{1}{2}}-z^{-\frac{1}{2}}\right)}\right\}$ |            | M1              |
|              |                                                  | $= \operatorname{Re}\left\{\frac{z^{n+\frac{1}{2}} - z^{\frac{1}{2}}}{2\mathrm{i}\sin\frac{1}{2}\theta}\right\}$   |            | A1              |
|              |                                                  | $=\frac{\sin\left(n+\frac{1}{2}\right)\theta-\sin\frac{1}{2}\theta}{2\sin\frac{1}{2}\theta}$                       | )<br>-     | A1              |
|              |                                                  | $=\frac{2\cos\frac{1}{2}(n+1)\theta\sin\frac{1}{2}n\theta}{2\sin\frac{1}{2}\theta}$ (B)                            |            | M1A1            |
|              |                                                  | $= \frac{\cos\frac{1}{2}(n+1)\theta\sin\frac{1}{2}n\theta}{\sin\frac{1}{2}\theta}  (AG$                            | i)         | A1<br>[7]       |

| Pa           | ge 7                                                           | Mark Scheme<br>GCE A LEVEL – May/June 2014                                                                                                                   | Syllabus<br>9231 | Paper<br>13 |
|--------------|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------|
| Qn &<br>Part |                                                                | Solution                                                                                                                                                     |                  | Marks       |
| 5            | Alterna                                                        | tive (i)                                                                                                                                                     |                  |             |
|              | $\Sigma = \operatorname{Re}\left\{$                            | $\left\{\frac{z-z^{n+1}}{1-z}\right\}$                                                                                                                       |                  | (M1)        |
|              | $= \operatorname{Re}\left\{ \left\{ \right. \right\} \right\}$ | $\frac{e^{i\theta} - e^{i(n+1)\theta}}{1 - e^{i\theta}} \times \frac{1 - e^{-i\theta}}{1 - e^{-i\theta}} \bigg\}$                                            |                  | (M1)        |
|              | $= \operatorname{Re} \left\{ \right.$                          | $\left\{\frac{e^{i\theta} - e^{i(n+1)\theta} - 1 + e^{in\theta}}{2 - 2\cos\theta}\right\}$                                                                   |                  |             |
|              | $=\frac{\cos}{2}$                                              | $\frac{\theta - \cos(n+1)\theta - 1 + \cos n\theta}{2 - 2\cos\theta}$ (Numerator and denominator.)                                                           |                  | (A1A1)      |
|              | = -2:                                                          | $\frac{\sin^2\left(\frac{\theta}{2}\right) + 2\sin\left(\frac{2n+1}{2}\right)\theta\sin\left(\frac{\theta}{2}\right)}{4\sin^2\left(\frac{\theta}{2}\right)}$ |                  | (A1)        |
|              | $=\frac{1}{2\sin^2 2}$                                         | $\frac{1}{n\left(\frac{\theta}{2}\right)}\left\{\sin\left(n+\frac{1}{2}\right)\theta-\sin\left(\frac{\theta}{2}\right)\right\}$                              |                  | (M1)        |
|              | $=\frac{2 \operatorname{cc}}{$                                 | $\frac{\sin\left(\frac{n+1}{2}\right)\theta\sin\left(\frac{n\theta}{2}\right)}{2\sin\left(\frac{\theta}{2}\right)}$                                          |                  |             |
|              | =                                                              | $\frac{\left(\frac{n+1}{2}\right)\theta\sin\left(\frac{n\theta}{2}\right)}{\sin\left(\frac{\theta}{2}\right)}$ (CAO) (AG)                                    |                  | (A1)        |
|              |                                                                | $\sin\left(\frac{1}{2}\right)$                                                                                                                               |                  | [7]         |

| Pa           | ge 8                                                  | Mark Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Syllabus                                                                 | Paper  |
|--------------|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------|
|              |                                                       | GCE A LEVEL – May/June 2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9231                                                                     | 13     |
| Qn &<br>Part |                                                       | Solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                          | Marks  |
| 5            | Alterna                                               | tive (ii)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                          |        |
| -            |                                                       | $\frac{z^{n+1}-z}{z-1} \bigg\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                          | (M1)   |
|              | $= \operatorname{Re}\left\{ \left\{ \right. \right\}$ | $\frac{(\cos\theta + i\sin\theta) - (\cos[n+1]\theta + i\sin[n+1]\theta)}{(1 - \cos\theta) - i\sin\theta} \times \frac{(1 - \cos\theta) + i\sin\theta}{(1 - \cos\theta) + i\sin\theta}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\left[\frac{\operatorname{in} \theta}{\operatorname{in} \theta}\right]$ | (M1)   |
|              | $= \operatorname{Re}\left\{ \right.$                  | $\frac{2\sin\left[\frac{n+2}{2}\right]\theta\sin\left(\frac{n\theta}{2}\right) - 2i\cos\left[\frac{n+2}{2}\right]\theta\sin\left(\frac{n\theta}{2}\right)}{(1-\cos\theta)^2 + \sin^2\theta} \times \frac{(1-\cos\theta)^2}{(1-\cos\theta)^2} + \frac{1-\cos\theta}{(1-\cos\theta)^2} + \frac{1-\cos\theta}{(1-\cos\theta)^$ | $\left  \frac{1}{1} + i \sin \theta \right $                             |        |
|              | 2 sir                                                 | $n\left[\frac{n+2}{2}\right]\theta\sin\left(\frac{n\theta}{2}\right)(1-\cos\theta)+2\cos\left[\frac{n+2}{2}\right]\theta\sin\left(\frac{n\theta}{2}\right)\sin\theta}{2-2\cos\theta}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (Num. and Denom.)                                                        | (A1A1) |
|              | $=\frac{\sin^2}{2\sin^2}$                             | $\frac{\left(\frac{n\theta}{2}\right)}{n^{2}\left(\frac{\theta}{2}\right)}\left\{\sin\left[\frac{n+2}{2}\right]\theta(1-\cos\theta)+\cos\left[\frac{n+2}{2}\right]\theta\sin\theta\right\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                          | (A1)   |
|              | $=\frac{\sin^2}{2\sin^2}$                             | $\frac{\left(\frac{n\theta}{2}\right)}{n^{2}\left(\frac{\theta}{2}\right)}\left\{\sin\left[\frac{n+2}{2}\right]\theta - \left(\sin\left[\frac{n+2}{2}\right]\theta\cos\theta - \cos\left[\frac{n+2}{2}\right]\theta\sin\theta\right)\right\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                          |        |
|              | $=\frac{\sin^2}{2\sin^2}$                             | $\frac{\left(\frac{n\theta}{2}\right)}{n^2\left(\frac{\theta}{2}\right)} \left\{ \sin\left[\frac{n+2}{2}\right]\theta - \sin\left(\frac{n\theta}{2}\right) \right\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                          | (M1)   |
|              | $=\frac{\sin^2}{2\sin^2}$                             | $\frac{\left(\frac{n\theta}{2}\right)}{n^2\left(\frac{\theta}{2}\right)} \left\{ 2\cos\left(\frac{n+1}{2}\right)\theta\sin\left(\frac{\theta}{2}\right) \right\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                          |        |
|              | $=\frac{\cos(1-2)}{1-2}$                              | $\frac{\left(\frac{n+1}{2}\right)\theta\sin\left(\frac{n\theta}{2}\right)}{\sin\left(\frac{\theta}{2}\right)}$ (CAO) (AG)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                          | (A1)   |
|              |                                                       | $\sin\left(\frac{1}{2}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                          | [7]    |

|   | Paç        |                                  |                                                                                                                                                                                                                                                                                                                                      | Paper                              |                     |
|---|------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|---------------------|
|   |            |                                  | GCE A LEVEL – May/June 2014                                                                                                                                                                                                                                                                                                          | 9231                               | 13                  |
| - | n &<br>art |                                  | Solution                                                                                                                                                                                                                                                                                                                             |                                    | Marks               |
| 6 | (i)        | $\dot{x}^2 + \dot{y}^2 =$        | 4 , $\dot{y} = 4e^{\frac{1}{2}t}$ (both)<br>= $e^{2t} - 8e^{t} + 16 + 16e^{t} = (e^{t} + 4)^{2}$ (ACF)<br>+ 4) $dt = [e^{t} + 4t]_{0}^{2} = e^{2} + 8 - 1 = e^{2} + 7$                                                                                                                                                               |                                    | B1<br>M1A1<br>M1A1  |
|   | (ii)       | •                                | $\int_{0}^{2} 8e^{\frac{1}{2}t} (e^{t} + 4) dt$                                                                                                                                                                                                                                                                                      |                                    | [5]<br>B1√          |
|   |            |                                  | $e^{\frac{3}{2}t} + 4e^{\frac{1}{2}t} dt = 16\pi \left[ \frac{2}{3} e^{\frac{3}{2}t} + 8e^{\frac{1}{2}t} \right]_{0}^{2}$ $= 16\pi \left\{ \left[ \frac{2}{3} e^{3} + 8e \right] - \left[ \frac{2}{3} + 8 \right] \right\} = 16\pi \left( \frac{2}{3} e^{3} + 8e^{-\frac{1}{2}t} \right)$ M1A1 can be earned without use of limits.) | $\left(\frac{-26}{3}\right)$ (ACF) | M1A1<br>M1A1<br>[5] |
| 7 |            | $\dot{x} = \cos t$               | $, \dot{y} = 2\cos 2t \Rightarrow y' = \frac{2\cos 2t}{\cos t}$                                                                                                                                                                                                                                                                      |                                    | M1A1                |
|   |            |                                  | $\frac{\cos t \sin 2t + 2\cos 2t \sin t}{\cos^2 t} \times \frac{1}{\cos t} = -\frac{4\sin 2t}{\cos^2 t} + \frac{2\cos 2t \sin t}{\cos^3 t}  ($                                                                                                                                                                                       | OE)                                | M1A1                |
|   |            | e.g. y" =                        | $=\frac{4\sin^3 t - 6\sin t}{\cos^3 t}$                                                                                                                                                                                                                                                                                              |                                    | A1<br>[5]           |
|   |            | $y'$ or $\dot{y} =$              | $0 \Rightarrow \cos 2t = 0$                                                                                                                                                                                                                                                                                                          |                                    | M1                  |
|   |            | $2t = \frac{\pi}{2} ,$           | $\frac{3\pi}{2} \Longrightarrow t = \frac{\pi}{4} , \frac{3\pi}{4}$                                                                                                                                                                                                                                                                  |                                    | A1                  |
|   |            |                                  | ry points are $\left(\frac{1}{\sqrt{2}},1\right)$ , $\left(\frac{1}{\sqrt{2}},-1\right)$                                                                                                                                                                                                                                             |                                    | A1                  |
|   |            | . ( )                            | only one value of t is given with correct corresponding coor<br>= $-8 \Rightarrow max$ . (CWO)                                                                                                                                                                                                                                       | dinates – A1)                      | B1                  |
|   |            | $y''\left(\frac{3\pi}{4}\right)$ | $=+8 \Rightarrow \min.$ (CWO)                                                                                                                                                                                                                                                                                                        |                                    | B1<br>[5]           |

| Page 10 | Mark Scheme                 | Syllabus | Paper |
|---------|-----------------------------|----------|-------|
|         | GCE A LEVEL – May/June 2014 | 9231     | 13    |

| Qn &<br>Part | Solution                                                                                                                                                                                                                                  | Marks                   |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| 8            | $\mathbf{A}\mathbf{e} = \lambda \mathbf{e} \Longrightarrow \mathbf{A}^{-1} \mathbf{A}\mathbf{e} = \mathbf{A}^{-1} \lambda \mathbf{e}$                                                                                                     | M1                      |
|              | $\therefore \mathbf{e} = \mathbf{A}^{-1} \lambda \mathbf{e} = \lambda \mathbf{A}^{-1} \mathbf{e} \Longrightarrow \frac{1}{\lambda} \mathbf{e} = \mathbf{A}^{-1} \mathbf{e}$                                                               | A1<br>[2]               |
|              | $\mathbf{A}\mathbf{e} + \mathbf{A}^{-1}\mathbf{e} = \lambda \mathbf{e} + \frac{1}{\lambda}\mathbf{e} \Longrightarrow (\mathbf{A} + \mathbf{A}^{-1})\mathbf{e} = \left(\lambda + \frac{1}{\lambda}\right)\mathbf{e}$                       | B1<br>[1]               |
|              | $\begin{vmatrix} i & j & k \\ 1 & 0 & 1 \\ -1 & 1 & 3 \end{vmatrix} = \begin{pmatrix} -1 \\ -4 \\ 1 \end{pmatrix} $ (OE)                                                                                                                  | M1A1<br>[2]             |
|              | $ \begin{pmatrix} 2 & 0 & 1 \\ -1 & 2 & 3 \\ 1 & 0 & 2 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix} \Rightarrow \lambda = 2 $                                                      | B1                      |
|              | $ \begin{pmatrix} 2 & 0 & 1 \\ -1 & 2 & 3 \\ 1 & 0 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ 6 \\ 3 \end{pmatrix} \Rightarrow \lambda = 3 $                                                      | B1<br>[2]               |
|              | (S.C. Award B1 for eigenvalues obtained from characteristic equation and not matched to eigenvectors.)<br>$\mathbf{P} = \begin{pmatrix} -1 & 0 & 1 \\ -4 & 1 & 2 \\ 1 & 0 & 1 \end{pmatrix}$ (OE) (F.T. on their calculated eigenvector.) | B1√ <sup>^</sup>        |
|              | Eigenvalues are $\left(1+\frac{1}{1}\right)^3 = 8$ , $\left(2+\frac{1}{2}\right)^3 = \frac{125}{8}$ , $\left(3+\frac{1}{3}\right)^3 = \frac{1000}{27}$                                                                                    | M1A1                    |
|              | $\mathbf{D} = \begin{pmatrix} 8 & 0 & 0 \\ 0 & \frac{125}{8} & 0 \\ 0 & 0 & \frac{1000}{27} \end{pmatrix} $ (F.T. requires decent attempt at $\left(\lambda + \frac{1}{\lambda}\right)^3$ .)                                              | B1√ <sup>^</sup><br>[4] |

| Page 11      |                                    | Mark Scheme                                                                                                                                                                                                                   | Syllabus                                            | Paper       |
|--------------|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-------------|
|              |                                    | GCE A LEVEL – May/June 2014                                                                                                                                                                                                   | 9231                                                | 13          |
| Qn &<br>Part | Solution                           |                                                                                                                                                                                                                               |                                                     | Marks       |
| 9            | •                                  | $\cos^2 \theta  \mathrm{d}\theta = -\frac{1}{3}\cos^3 \theta + c$ (Ignore omission of c.)                                                                                                                                     |                                                     | B1<br>[1]   |
|              | $I_n = \int_0^{\frac{\pi}{2}} s$   | $\sin^n \theta \cos^2 \theta \mathrm{d}\theta = \left[ -\sin^{n-1} \theta \cdot \frac{\cos^3 \theta}{3} \right]_0^{\frac{\pi}{2}} + \int_0^{\frac{\pi}{2}} (n-1) \sin^{n-2} \theta \mathrm{d}\theta$                          | $\cos\theta.\frac{\cos^3\theta}{3}\mathrm{d}\theta$ | M1A1        |
|              |                                    | $= 0 + \int_0^{\frac{\pi}{2}} \frac{(n-1)}{3} \sin^{n-2} \theta \cos^2 \theta (1 - \sin^2 \theta)  \mathrm{d}\theta$                                                                                                          |                                                     | M1A1        |
|              | 1                                  | mits not required for both M marks; also the parts for integr<br>= $\sin^n x \cos x$ .)<br>= $\frac{(n-1)}{3} (I_{n-2} - I_n)$                                                                                                | ation can be: $u = \cos \theta$                     | x           |
|              | ⇒⇒                                 | $I_n = \frac{(n-1)}{(n+2)} I_{n-2}  (AG)$                                                                                                                                                                                     |                                                     | A1<br>[5]   |
|              | $I_0 = \int_0^{\frac{\pi}{2}} dt$  | $\cos^{2} \theta  \mathrm{d}\theta = \frac{1}{2} \int_{0}^{\frac{\pi}{2}} (\cos 2\theta + 1) \mathrm{d}\theta = \frac{1}{2} \left[ \frac{\sin 2\theta}{2} + \theta \right]_{0}^{\frac{\pi}{2}} = \frac{\pi}{4}  (\mathrm{Or}$ | <i>I</i> <sub>2</sub> )                             | M1A1        |
|              | $\therefore I_4 = \frac{3}{6}$     | $\times \frac{1}{4} \times \frac{\pi}{4} = \frac{\pi}{32}  (CAO)$                                                                                                                                                             |                                                     | M1A1<br>[4] |
| 10           |                                    | $6m + 0.0064 = 0 \Rightarrow (m + 0.08)^2 = 0 \Rightarrow m = -0.08$<br>(A + Bt)e <sup>-0.08t</sup>                                                                                                                           |                                                     | M1<br>A1    |
|              | PI: $x = p$                        | $+qt \Rightarrow \dot{x} = q \Rightarrow \ddot{x} = 0$                                                                                                                                                                        |                                                     | M1          |
|              | 1                                  | $0.0064(p+qt) = 8.64 + 0.32t \Rightarrow p = 100$ , $q = 50$ .                                                                                                                                                                |                                                     | M1A1        |
|              | x = (A +                           | $(Bt)e^{-0.08t} + 100 + 50t$                                                                                                                                                                                                  |                                                     | A1          |
|              |                                    | $hen t = 0 \Longrightarrow A = -100$                                                                                                                                                                                          |                                                     | B1          |
|              |                                    | $8(Bt - 100) e^{-0.08t} + Be^{-0.08t} + 50$ (*) (Correct form req. for                                                                                                                                                        | M mark.)                                            | M1          |
|              |                                    | $hen t = 0 \implies B = -58$<br>+ 50t - (100 + 58t)e <sup>-0.08t</sup>                                                                                                                                                        |                                                     | A1<br>A1    |
|              | $\lambda = 100$                    | + 50i = (100 + 50i)c                                                                                                                                                                                                          |                                                     | [10]        |
|              | From (*)                           | $e^{-0.08t} \rightarrow 0$ as $t \rightarrow \infty$ (Correct form req. for M mark.)                                                                                                                                          |                                                     | M1          |
|              | $\therefore \dot{x} \rightarrow 5$ | i ,                                                                                                                                                                                                                           |                                                     | A1          |
|              |                                    |                                                                                                                                                                                                                               |                                                     | [2]         |

| Page 12      |                                                                                                | Mark Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Syllabus | Paper                                                            |
|--------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------------------------------------------------------|
|              |                                                                                                | GCE A LEVEL – May/June 2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9231     | 13                                                               |
| Qn &<br>Part |                                                                                                | Solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          | Marks                                                            |
| 11           | $\Rightarrow A = 3$<br>$y' = 0 \Rightarrow$<br>$B^{2} - 4AC$<br>Asympto<br>$y = 2 \Rightarrow$ | $\frac{A}{x+1} = \frac{2(x^2-1) + A(x+1) + B(x-1)}{x^2-1} = \frac{2x^2 + (A+B)x + A}{x^2-1}$<br>$\frac{B}{x+1} = -4$<br>$\frac{(x^2-1)(4x-1) - (2x^2-x+5).2x = 0 \Rightarrow x^2 - 14x + 1 = 0}{(x^2-1)(4x-1) - (2x^2-x+5).2x = 0 \Rightarrow x^2 - 14x + 1 = 0}$<br>$C = (-14)^2 - 4 \times 1 \times 1 = 192 > 0 \Rightarrow \text{two distinct turning point}$<br>$\frac{B}{x+1} = \frac{1}{x+1},  x = -1 : y = 2$<br>$2x^2 - x + 5 = 2x^2 - 2 \Rightarrow x = 7 \Rightarrow (7, 2)  (\text{Accept if labelled of the branch})$<br>$\frac{B}{x+1} = \frac{1}{x+1} = \frac$ | ts.      | 5 M1<br>A1A1<br>[3]<br>M1A1<br>M1A1<br>[4]<br>B1B1<br>M1A1<br>B1 |
|              | ]                                                                                              | Right branch.<br>Working to show no intersections with $x$ -axis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | B1<br>B1<br>[7]                                                  |
|              | OR                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |                                                                  |
| (i)<br>(ii)  |                                                                                                | $2\mathbf{j} + 2\mathbf{k} + \lambda(\mathbf{i} + 7\mathbf{j} + \mathbf{k}) + \mu(3\mathbf{i} + \mathbf{j} - \mathbf{k}) \Rightarrow A \text{ is in } \Pi_1.$<br>$\begin{vmatrix} \mathbf{k} \\ 1 \\ -1 \end{vmatrix} = \begin{pmatrix} -8 \\ 4 \\ -20 \end{pmatrix} \sim \begin{pmatrix} 2 \\ -1 \\ 5 \end{pmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | B1<br>[1]<br>M1A1<br>[2]                                         |
| (iii)        |                                                                                                | -6, 6)<br>5z = 24 + 6 + 30 = 60<br>$-\mathbf{j} + 5\mathbf{k}) \Rightarrow 4t + t + 25t = 60 \Rightarrow t = 2$<br>$2\mathbf{j} + 10\mathbf{k}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | B1<br>B1<br>M1A1√ <sup>♣</sup><br>A1<br>[5]                      |
| (iv)         | $\mathbf{m} = 4\mathbf{i} -$                                                                   | $2\mathbf{j} + 2\mathbf{k} + \frac{3}{4}(8\mathbf{i} - 4\mathbf{j} + 4\mathbf{k}) = 10\mathbf{i} - 5\mathbf{j} + 5\mathbf{k}$ (AG)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | B1                                                               |
|              | (6 <b>i</b> – 3 <b>j</b> –<br>Perpendi                                                         | $\mathbf{j}_{i} - 5, 5) \Rightarrow \overrightarrow{NM} = 6\mathbf{i} - 3\mathbf{j} - 5\mathbf{k}$<br>$\mathbf{j}_{i} - 5\mathbf{k}) \times (2\mathbf{i} - \mathbf{j} + 5\mathbf{k}) = -\mathbf{i} + 2\mathbf{j}$<br>iccular distance is $\frac{ 20(-\mathbf{i} + 2\mathbf{j}) }{\sqrt{30}} = \frac{20}{\sqrt{6}} = 8.16$<br>arrious alternative methods in a similar manner.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | B1√ <sup>♣</sup><br>M1A1<br>M1A1<br>[6]                          |