MARK SCHEME for the May/June 2014 series

9231 FURTHER MATHEMATICS

9231/22

Paper 2, maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – May/June 2014	9231	22

Question Number	Mark Scheme Details		Part Mark	Total
1	Equate impulse to momentum to find initial speed v and Newton's law of restitution to find new speed:	v = 4u, v' = ev = [-] 3u M1 A1	2	2
2	Find v^2 at both A and B:	$v_{A}^{2} = \omega^{2}(a^{2} - 0.5^{2}) and$ $v_{B}^{2} = \omega^{2}(a^{2} - 0.75^{2}) B1$		
	Find amplitude <i>a</i> m from given K.E. ratio:	$\frac{1}{2}mv_{A}^{2} = (12/11) \frac{1}{2}mv_{B}^{2}$		
		$11 (a^2 - 0.5^2) = 12 (a^2 - 0.75^2)$		
		$a^2 = \frac{1}{4}(27 - 11) = 4, \ a = 2$ M1 A1	3	
	Find ω from $v_{\text{max}} = a\omega$:	$0.6 = 2\omega, \omega = 0.3$ B1		
	Find time ($\sqrt[4]{}$ on a) at A	$\omega^{-1}\sin^{-1}(0.5/2) \text{ or } \omega^{-1}\cos^{-1}(0.5/2)$		
	<i>or</i> at <i>B</i> , e.g.:	$\omega^{-1}\sin^{-1}(0.75/2) \text{ or } \omega^{-1}\cos^{-1}(0.75/2)$ M1 A1 $\sqrt[n]{}$		
	Combine correctly to find time from <i>A</i> to <i>B</i> :	$\omega^{-1}\sin^{-1}(0.75/2) - \omega^{-1}\sin^{-1}(0.5/2)$		
		or $\omega^{-1}\cos^{-1}(0.5/2) - \omega^{-1}\cos^{-1}(0.75/2)$ M1		
	Evaluate to 3 d.p.:	$= \omega^{-1} (0.3844 - 0.2527)$ or $\omega^{-1} (1.318 - 1.186)$		
		= 1.2813 - 0.8423		
		$4 \cdot 3937 - 3 \cdot 9547 = 0 \cdot 439$ [s] A1	5	8

		Page 3		Mark Scheme	Syllabus	Paper		
			GCE A	LEVEL – May/June 2014	9231	22		
3	Use conservation	of momentum, e.g.:		$mv_A + 9mv_B = mu$		M1		
	Use Newton's la	w of restitution (consis	tent signs):	$v_B - v_A = eu$		M1		
	Relate v_A to v_B us	sing K.E. (A.E.F.):		$\frac{1}{2}mv_{A}^{2} + \frac{1}{2}9mv_{B}^{2} = \frac{1}{4}mu^{2}$		M1		
	Combine two equ	ns to find v_A and v_B e.g.	:	$v_A = (1 - 9e)u/10, v_B = (1 + e)u/10$	(+ e)u/10			
				or v_A , $v_B = -u/2$, $u/6$ [or $7u/10$, $u/30$	0]	M1 A1		
	Use in 3rd eqn to	o find <i>e</i> , e.g.:		$(1-9e)^2 + 9(1+e)^2 = 50$				
	(A0 if finally $\pm^{2/3}$)		$90 e^2 = 40, e = \frac{2}{3}$		M1 A1	7	
	Use Newton's la	w of restitution with		$v_C = 2v_B'$, e.g.: $v_C - v_B' = ev_B$, v_B'	$= \frac{2}{3}v_B$	B1		
				$[v_B = u/6, v_B = u/9, v_C = 2u/9]$				
	Use conservation	of momentum to find	k:	$9mv_B' + kmv_C = 9mv_B$				
				$9v_{B'} + 2kv_{B'} = 13.5v_{B'}, \ k = 9/4$		M1 A1	3	10

	Page 4	Mark Scheme	Syllabus	Paper		
		GCE A LEVEL – May/June 2014	9231	22		
4 (i)	Use conservation of energy at lowest point: Use $F = ma$ radially at lowest point: Eliminate v^2 to find R $[v^2 = 2.3 ga]$:	$\frac{1}{2}mv^{2} = \frac{1}{2}mu^{2} + mga$ $R - mg = mv^{2}/a$ $R = mu^{2}/a + 3mg = 3.3mg$		B1 B1 B1	3	
(ii)	Use conservation of energy at B to find V_B : (A.E.F.)	$V_{2}mV_{B}^{2} = V_{2}mu^{2} + mga\sin\theta$ $V_{B}^{2} = (0.3 + 0.5)ga, V_{B} = \sqrt{(0.8ga)}$ or $2\sqrt{(ga/5)}$ or $0.894\sqrt{(ga)}$		M1A1 A1	3	
(iii)	Use vertical component v_B of speed V_B at B : Find height h reached above B : Find height h reached above level of O :	$v_B = V_B \cos \theta \ [= \frac{1}{4}\sqrt{15} \ V_B = \sqrt{(\frac{3}{4}ga)}]$ $h = v_B^2/2g = \frac{3a}{8}$ $h - a \sin \theta = \frac{3a}{8} - \frac{1}{4}a = \frac{a}{8}$ A.G.		M1 M1 A1 A1	4	10
5	Find MI of components about <i>A</i> : (M1 for <i>BC</i> or <i>CD</i>)	Glass $(3M/5) \{\frac{1}{3}(5a)^2 + 25a^2\} =$ AB $M\{\frac{1}{3}(4a)^2 + (4a)^2\} = 64$ AD $\frac{1}{3}M\{\frac{1}{3}(3a)^2 + (3a)^2\} = 4$ BC $\frac{1}{3}M\{\frac{1}{3}(3a)^2 + 73a^2\} = 76$ CD $M\{\frac{1}{3}(4a)^2 + 52a^2\} = 176$	$\frac{Ma^{2}}{3}$ $\frac{Ma^{2}}{6}$ $\frac{Ma^{2/3}}{3}$	M1 A1 B1 B1 M1 A1 A1		
	Find total MI about <i>A</i> : (OR can first find total MI about centre of ma State or imply total mass acts at mid-point of			A1 M1	8	
	Use eqn of circular motion to find $d^2\theta/dt^2$: Approximate sin θ by θ and substitute for <i>I</i> :	$I d^{2}\theta/dt^{2} = [-] (49Mg/15) 5a \sin \theta d^{2}\theta/dt^{2} = - (49g/384a) \theta$		M1 A1 A1		
	Find period $T = 2\pi/\omega$ with $\omega = \sqrt{(49g/384)}$	a): $T = 2\pi \sqrt{(384a/49g)}$ or $(16\pi/7)\sqrt{(6a/g)}$ or $17.6\sqrt{(a/g)}$ (A.E.F.)		B1	5	13

]	Page 5		Mark Scheme	Syllabus	Paper		
		[GCE A LEVEL – May/June 2014 9231		22			
6		State or find the e	xpected value of X:	using $p = \frac{1}{4}$:	$E(X) = 1/p = 1/\frac{1}{4} = 4$		B1	1	
	(i)	Find $P(X=4)$:			$P(X=4) = (\frac{3}{4})^{3} \frac{1}{4} = \frac{27}{256} \text{ or } 0.105$		M1 A1	2	
	(ii)	Find $P(X < 6)$:			$P(X < 6) = 1 - (\frac{3}{4})^5$				
					or $\{1 + \frac{3}{4} + (\frac{3}{4})^2 + (\frac{3}{4})^3 + (\frac{3}{4})^4\}^{\frac{1}{4}}$				
		S.R. Using $p = \frac{1}{2}$	e can earn B0 M1 A	0 M0 A0	= 781/1024 or 0.763		M1 A1	2	5
7	(i)	State probability of	density function of 2	<i>T</i> :	$f(t) = 0.001 \exp(-0.001 t) (t \ge 0)$ [= 0 (otherwise or t < 0)]		B1	1	
	(ii)	S.R. $1 - e^{-2} = 0$.	: 865 earns B1 only or t (lose A1 if = or	· ,	P(t > 2000) = 1 - F(2000) = 1 - (1 - e ⁻²) = e ⁻² or 0.135 (exp(-0.001 t)) ¹⁰ ≥ [or >] 0.9		M1 M1 A1 M1 A1	3	
		Solve for t_{max} : (Omitting power 1) using $1 - (\exp(-0))$	10 earns $0/4$; $(0.001t)^{10}$ can earn	M1 A0 M1 A0	$t_{\text{max}} = (\ln 0.9) / (-0.01) = 10.5$		M1 A1	4	8

		Page 6		Mark Scheme	Syllabus	Paper	
			GCE A	A LEVEL – May/June 2014	9231 22		
8	(allow use of bias	pln. variances using sed: $\sigma_{X,60}^2 = 236 \sigma_{X,60}^2$ sed: $\sigma_{Y,50}^2 = 265 \sigma_{X,50}^2$	or 15.36^2)	H ₀ : $\mu_X = \mu_Y$, H ₁ : $\mu_X \neq \mu_Y$ $S_x^2 = (626220 - 6060^2/60) / 59$ [= 240 or 15.49 ²] And $s_Y^2 = (464500 - 4750^2/50) / 49$ [= 270.4 or 16.44 ²] $s^2 = s_X^2/60 + s_Y^2/50$		B1 M1 A1	
	(allow use of biased: $\sigma_{Y,50}^2 = 265 \text{ or}$ Estimate population variance for combined (allow $\sigma_{X,60}^2/60 + \sigma_{Y,50}^2/50$: 9.233 of Calculate value of z (to 2 d.p., either significant states of the constant states at the		or 3.039 ²) sign): (to 2 d.p.): 7.13 or 7.07) values): iances:	$= 9.408 \text{ or } 3.067^{2}$ $z = (101 - 95) / s$ $= 6/3.067 = 1.96 \text{ (or } 1.97)$ $z_{0.99} = 2.326 \text{ or } 2.33 \text{ (allow } 2.36)$ [Accept H ₀] Claims are the same Hypotheses; Explicit assumption : $s^{2} = (626 \ 220 - 6060^{2}/60 + 464 \ 500 - 4750^{2}/50) / 108$		M1 A1 M1 A1 B1 B1√ [♣] (B1; B1) (M1 A1)	
	Calculate value o Tabular value; co	f z (to 2 d.p., either a	sign):	$z = 6 / s \sqrt{(1/60 + 1/50)} = 1.97$ = 253.8 or 15.93 ² As above		(M1 A1) (A1) (B1; B1√	9

	Page 7	Mark Scheme	Syllabus	Paper		
		GCE A LEVEL – May/June 2014	9231	22		
9	Find expected frequency <i>p</i> :	$p = 200 \int_{2}^{3} (1 / x \ln 8) dx$ = (200 / ln 8) [ln x] ₂ ³				
		$= 200 \times 0.1950 = 39.00$ A.G. q = 21.46 or 21.45		M1A1 M1A1		
	Find q by similar method or by usin	g total of 200:				
	State (at least) null hypothesis: Calculate χ^2 (to 3 s.f.):	H ₀ : f(x) fits data (A.E.F.) $\chi^2 = 0.202 + 0.923 + 0.678 + 0.584$		B1	4	
	State or use correct tabular χ^2 value	e (to 3 s.f.):: $\chi_{6,0.95}^2 = 12.59$		M1A1 B1		
	Valid method for reaching conclusion Conclusion consistent with correct			M1 A1	6	10
10	Find correlation coefficient <i>r</i> :	$(101.076 - 0.00^2 / 10) (55.001 - 0.00^2 / 10))$				
	$r = (/3 \ 52/ - 866 \times 639/10) / N \{$ (A.E.F.; A0 if only 3 s.f. clearly use	$(121\ 276 - 866\ ^2/\ 10)\ (55\ 991 - 639\ ^2/\ 10)\} = 18\ 189.6\ /\ \sqrt{(46\ 280.4 \times 15\ 158.9)}$)	M1 A1 A1		
		= 0.687)	*A1	4	
	State both hypotheses (B0 for r State or use correct tabular two-tail			B1 *B1		
	Valid method for reaching conclusion	bon: Reject H_0 if $ r > tabular value$		M1		
	Correct conclusion (A.E.F, dep */	-		A1	4	
	Calculate gradient p in $x - \overline{\chi} = p$			B1	4	
	Find regression line of <i>x</i> on <i>y</i> :	x = 86.6 + 1.20 (y - 63.9) = 1.20 y + 9.92		M1 A1	3	11

		Page 8	Mark Scheme GCE A LEVEL – May/June 2014	Syllabus 9231	Paper 22		
11 A (i)	Use Pythagora	s to find <i>AB</i> :	$AB = \sqrt{(4a^2 + 12a^2)} = 4a$	A.G.	M1 A1		
	Find $\angle SAB$:		$\angle CAB = \sin^{-1} 2a \sqrt{3}/4a \text{ or } \cos^{-1} 2a/4$	a			
			or $\tan^{-1} 2a\sqrt{3}/2a$				
(ii)			$=60^{\circ}$ so $\angle SAB = 30^{\circ}$	A.G.	M1 A1	4	
(11)	EITHER						
	Resolve vertica	ally and horizontally, e.g.:	$\frac{1}{2} N_A + \frac{1}{2} \sqrt{3} N_B + \frac{1}{2} \sqrt{3} F_A = W$				
	$(F_A \text{ may be in } G_A)$	either direction)	and $\frac{1}{2}\sqrt{3} N_A = \frac{1}{2} N_B + \frac{1}{2} F_A$		M1 A1		
	Eliminate N_B +	+ F_A to find N_A :	$N_A = \frac{1}{2} W$	A.G.	Al		
	OR					3	
(iii)							
	Resolve in dirr	n. PQ to find N_A :	$N_A = \frac{1}{2} W$	A.G.	(M1 A1))	
	Second resolut	ion, e.g. in dirn. PS:	$N_B + F_A = \frac{1}{2}\sqrt{3} W$		(A1))	
	Take moments	, e.g. about A:	$\frac{1}{2}\sqrt{3} W \times \frac{3a}{2} + \frac{1}{2} W \times (2\sqrt{3}-3)a$				
	(A1 for each si	ide of eqn)	$= N_B \times 2 a$		M1 A1 A1		
	Solve to find Λ	<i>V_B</i> :	$N_B = \{(7\sqrt{3}-6)/8\} W$		M1 A1		
	Use N_B to find	F_A :	$F_A = \sqrt{3} N_A - N_B \text{ or } \frac{1}{2} \sqrt{3} W - N_B$				
			= $\{3(2-\sqrt{3})/8\}W$ (A.E.F.)		M1 A1	7	14

		Page 9			Syllabus	Paper		
			GCE A	LEVEL – May/June 2014	9231	22		
В	Estimate popu	lation variance:		$s_P^2 = (236.0 - 42.8^2/8)/7$				
	(allow biased)	here: 0.8775 or 0.9	9367 ²)	= 351/350 or 1.003 or 1.001 ²		M1		
	Find confiden	ce interval (allow z	in place of <i>t</i>) e.g.:	$42.8/8 \pm t \sqrt[4]{(s_P^2/8)}$		M1		
	Use correct tal	bular <i>t</i> -value:		$t_{7, 0.975} = 2.365$		A1		
	Evaluate C.I.	correct to 2 d.p.:		5.35 ± 0.84 or $[4.51, 6.19]$		A1	4	
	Formulate ine	quality for k (or equ	tality for k_{max}):	$(5.35 - k) / \sqrt{(s_P^2/8)} \ge [or >] t$		M1		
	Use correct tal	bular <i>t</i> -value:		$t_{7, 0.9} = 1.415$		A1		
	Solve for k_{max}	(A0 if = or \leq was	s used for <i>k</i> above):	$5.35 - k \ge 0.50, k_{\text{max}} = 4.85$		A1	3	
	State hypothes	ses (B0 for \overline{x}), e	.g.:	$H_0: \mu_P = \mu_Q, H_1: \mu_P > \mu_Q$		B1		
	State assumption	ion (A.E.F.):		Normal distns. for $[P \text{ and}] Q$				
				and equal variances		B1		
	Estimate (pool	led) common varian	ice:	$s^2 = (7 \times 1.003 + 11 \times 1.962)/18$				
				$= 1.589 \text{ or } 1.261^2$		M1 A1		
	Calculate valu	the of t (to 3 s.f.):		$t = (5.35 - 4.60) / (s \sqrt{(1/8 + 1/12)})$				
				= 1.30		M1 A1		
	Correct conclu	usion (A.E.F., 📌 on	<i>t</i>):	$t < t_{18, 0.9} = 1.33$ so Q's mean is not least	ss than P's	B1√ [^]	7	14