MARK SCHEME for the May/June 2015 series

9231 FURTHER MATHEMATICS

9231/21
Paper 2, maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.
$®$ IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - May/June 2015	$\mathbf{9 2 3 1}$	21

Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol \downarrow implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.

B2/1/0 means that the candidate can earn anything from 0 to 2 .
The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10 .

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - May/June 2015	9231	21

The following abbreviations may be used in a mark scheme or used on the scripts:
AEF Any Equivalent Form (of answer is equally acceptable)
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)

CWO Correct Working Only - often written by a "fortuitous" answer
ISW Ignore Subsequent Working
MR Misread
PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)

SOS See Other Solution (the candidate makes a better attempt at the same question)
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through \downarrow " marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR-2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - May/June 2015	9231	21

\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
Question \\
Number
\end{tabular} \& \multicolumn{2}{|l|}{Mark Scheme Details} \& \begin{tabular}{l}
Part \\
Mark
\end{tabular} \& Total \\
\hline 1 \& \begin{tabular}{l}
Find \(T\) by equating \(\mathrm{d} v / \mathrm{d} t\) at \(t=T\) to 6 : \\
Find radial component \(v^{2} / r\) of acceln. at \(t=T\) : \\
(M0 if \(T\) not given a value) \\
SR: Max M1 (1/4) if linear and angular confused
\end{tabular} \& \[
\begin{aligned}
4 T-4 \& =6, T=2.5 \& \text { M1 A1 } \\
v^{2} / r \& =\left(2 T^{2}-4 T+3\right)^{2} / 0.25 \& \\
\& =(11 / 2)^{2} \times 4=121\left[\mathrm{~m} \mathrm{~s}^{-2}\right] \& \text { M1 A1 }
\end{aligned}
\] \& 4 \& 4 \\
\hline \begin{tabular}{l}
2 (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
Find \(\omega^{2}\) from SHM eqn. \(\mathrm{d}^{2} x / \mathrm{d} t^{2}=-\omega^{2} x\) at \(C\) : Find period \(T\) [s] from \(T=2 \pi / \omega\) : (ft on \(\left.\omega^{2}\right)\) \\
Find amplitude \(a[\mathrm{~m}]\) from \(v_{C}{ }^{2}=\omega^{2}\left(a^{2}-10^{2}\right)\) : \\
Find time from \(C\) to \(M\), e.g.: \\
(AEF throughout)
\end{tabular} \& \[
\begin{array}{ll}
0.625=10 \omega^{2}, \omega^{2}=0.0625 \text { or } 1 / 16 \& \text { B1 } \\
T=2 \pi / 1 / 4=8 \pi(\text { not } 25.1) \& \text { B1 } \\
\& \\
6^{2}=\omega^{2}\left(a^{2}-10^{2}\right) \& \\
a^{2}=6^{2} \times 16+10^{2}, a=\sqrt{ } 676=26 \& \text { M1 A1 } \\
\omega^{-1} \sin ^{-1}(10 / a)+\omega^{-1} \sin ^{-1} 1 / 2 \text { or } \& \\
\omega^{-1} \cos ^{-1}(-10 / a)-\omega^{-1} \cos ^{-1} 1 / 2 \text { or } \& \\
1 / 2 T-\omega^{-1} \cos ^{-1}(10 / a)-\omega^{-1} \cos ^{-1} 1 / 2 \& \text { M1 } \\
=\omega^{-1}\{0.3948+\pi / 6[=0.5236]\} \text { or } \& \\
\omega^{-1}\{1.9656-\pi / 3[=1.0472]\} \text { or } \& \\
\omega^{-1}\{\pi-1.760-\pi / 3[=1.0472]\} \& \text { A1 } \\
=1.579+2.094 \text { or } 7.862-4.189 \& \\
\text { or } 12.567-4.704-4.189 \& \\
\text { or } 4 \times 0.9184 ;=3.67[\mathrm{~s}] \& \text { A1; A1 }
\end{array}
\] \& 2
2

4 \& 8

\hline 3 \& | Find v^{2} from conservation of energy: |
| :--- |
| Find R by using $F=m a$ radially: |
| Eliminate v^{2} to find R : AG |
| Find u^{2} or v^{2} in terms of $\cos \theta$ when $R=0$: |
| EITHER: Replace $\cos \theta$ in energy eqn with $v=2 u$: |
| OR: \quad Find $\cos \theta$ and substitute in energy eqn: |
| Hence find u : | \& | $1 / m v^{2}=1 / 2 m u^{2}+m g a(1-\cos \theta)$ | M1 A1 |
| :--- | ---: |
| $R=m g \cos \theta-m v^{2} / a$ | B1 |
| $R=m g(3 \cos \theta-2)-m u^{2} / a$ | M1 A1 |
| $u^{2}=a g(3 \cos \theta-2) o r$ | |
| $v^{2}=a g \cos \theta$ | B1 |
| $4 u^{2}=u^{2}+2 a g-2 / 3\left(u^{2}+2 a g\right)$ | |
| $o r u^{2}+2 a g-8 u^{2}$ | M1 A1 |
| $\left[v^{2} a g=\right] 4(3 \cos \theta-2)=\cos \theta$ | |
| $\cos \theta=8 / 11$ | |
| $4 u^{2}=u^{2}+2 a g(1-8 / 11)$ | (M1 A1) |
| $u=\sqrt{ }(2 a g / 11)$ or $0.426 \sqrt{ }(a g)$ | A1 | \& 5

4 \& 9

\hline 4 (i) \& | Take moments for rod about B : |
| :--- |
| (or with $\cos 30^{\circ}=\sqrt{ } 3 / 2$) |
| Hence find tension T : |
| (Can earn M1 A0 A1 if e.g. $\sin 30^{\circ}$ wrongly used) |
| Find modulus λ using Hooke's Law: | \& \[

$$
\begin{array}{lr}
W \times a \cos 30^{\circ}+3 W \times 2 a \cos 30^{\circ} & \\
=T \times 2 a \cos 30^{\circ} & \text { M1 A1 } \\
T=7 W / 2 & \text { A1 } \\
T=\lambda(2 a-3 a / 5) /(3 a / 5) & \\
\lambda=(3 / 7)(7 W / 2)=3 W / 2 & \text { M1 A1 }
\end{array}
$$
\] \& 5 \&

\hline
\end{tabular}

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - May/June 2015	9231	21

\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
Question \\
Number
\end{tabular} \& Mark Scheme D \& Details \& \begin{tabular}{l}
Part \\
Mark
\end{tabular} \& Total \\
\hline (ii) \& \begin{tabular}{l}
EITHER: Find horizontal component of force \(F\) at \(B\) : \\
Find vertical component: \((X, Y \mathrm{ft}\) on \(T)\) \\
Find magnitude of \(F\) : \\
Find direction of \(F\) (AEF): \\
(A0 if direction unclear) \\
OR: Find component along \(C B\) : \\
Find normal component: (\(F_{1}, F_{2} \mathrm{ft}\) on \(T\)) \\
Find magnitude of \(F\) : \\
Find direction of \(F\) (AEF): \\
(A0 if direction unclear) \\
OR: Find component parallel to string \(C A\) : \\
Find normal component: \(\left(F_{1}, F_{2} \mathrm{ft}\right.\) on \(\left.T\right)\) \\
Find magnitude of \(F\) : \\
Find direction of \(F\) (AEF): \\
(A0 if direction unclear)
\end{tabular} \& \& 5 \& 10 \\
\hline 5 \& \begin{tabular}{l}
For \(A \& B\) use conservation of momentum, e.g.: \\
(\(m\) may be omitted here and below) \\
Use Newton's law of restitution (consistent signs): \\
Combine to find \(v_{B}\) : \\
For \(B \& C\) use conservation of momentum, e.g.: \\
Use Newton's law of restitution (consistent signs): \\
Combine to find \(v_{C}\) and \(v_{B}{ }^{\prime}\) : \\
Find ratios or values of \(v_{A}, v_{B}{ }^{\prime}, v_{C}\) from momentum: \\
Find \(e\) from first collision eqns, e.g.: \\
(or find \(e^{\prime}\) and then use \(3 v_{A}=2 v_{B}{ }^{\prime}\)) \\
Find \(e^{\prime}\) from second collision eqns, e.g.:
\end{tabular} \& \[
\begin{array}{lr}
3 m v_{A}+2 m v_{B}=3 m u \& \text { M1 } \\
\& \\
v_{B}-v_{A}=e u \& \text { M1 } \\
v_{B}=3(1+e) u / 5 \& \text { A1 } \\
2 m v_{B}^{\prime}+m v_{C}=2 m v_{B} \& \text { M1 } \\
v_{C}-v_{B}^{\prime}=e^{\prime} v_{B} \& \text { M1 } \\
v_{C}=2\left(1+e^{\prime}\right) v_{B} / 3 \& \\
\& =2(1+e)\left(1+e^{\prime}\right) u / 5 \\
v_{B}^{\prime}=\left(2-e^{\prime}\right) v_{B} / 3 \& \\
\& =(1+e)\left(2-e^{\prime}\right) u / 5 \\
3 v_{A}=2 v_{B}^{\prime}=v_{C}[=u] \& \text { A1 } \\
v_{A}=(3-2 e) u / 5=u / 3 \& \text { A1 } \\
\text { or } v_{B}=1 / 2(3 u-u) \text { or }(1 / 3+e) u \& \\
\quad=3(1+e) u / 5, e=2 / 3 \& \text { B1 A1 } \\
2 v_{B}^{\prime}=v_{C} \text { so } 2\left(2-e^{\prime}\right)=2\left(1+e^{\prime}\right) \& \\
\text { or } v_{C}=2(1+2 / 3)\left(1+e^{\prime}\right) u / 5=u \\
\text { or } v_{B}^{\prime}=(1+2 / 3)\left(2-e^{\prime}\right) u / 5=u / 2 \& \\
e^{\prime}=1 / 2 \& \text { M1 A1 }
\end{array}
\] \& 7

5 \& 12

\hline 6 \& | Equate pooled estimate of σ^{2} to 12 : |
| :--- |
| Formulate and solve relevant quadratic eqn. for N : | \& \[

$$
\begin{array}{ll}
\left(11-5^{2} / N+160-10^{2} / 10\right) / & \\
(N+10-2)=12 & \text { M1 A1 } \\
12 N^{2}-65 N+25=0, N=5 & \text { M1 A1 }
\end{array}
$$
\] \& 4 \& 4

\hline
\end{tabular}

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - May/June 2015	9231	21

\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
Question \\
Number
\end{tabular} \& Mark Scheme D \& Details \& \begin{tabular}{l}
Part \\
Mark
\end{tabular} \& Total \\
\hline 7 \& \begin{tabular}{l}
Find \(\Sigma x\) via sample mean \(\bar{x}\) : \\
Find estimate of population variance \(s^{2}\) : \\
Use of correct tabular value (1.96 leads to 23.2):
\[
\text { (to } 3 \text { d.p.) }
\] \\
Find \(\Sigma x^{2}\) from \(s^{2}\) : \\
(M0 for \(\left.s^{2}=\{\ldots\} / 8\right)\)
\end{tabular} \& \[
\begin{array}{lr}
\Sigma x=8 \bar{x}=8 \times 1 / 2(1.17+2.03) \& \\
\& =8 \times 1.6=12.8 \\
t \sqrt{ }\left(s^{2} / 8\right)=1 / 2(2.03-1.17)[=0.43] \& \text { M1 A1 } \\
t_{7,0} .095=2.36[5] \& \text { A1 } \\
s^{2}=0.2645 \text { or } 32 / 121 \text { or } 0.5143^{2} \& \text { A1 } \\
s^{2}=\left\{\Sigma x^{2}-(\Sigma x)^{2} / 8\right\} / 7 \\
\Sigma x^{2}=7 \times 0.2645+12.8^{2} / 8=22.3 \text { M1 A1 }
\end{array}
\] \& 7 \& 7 \\
\hline \begin{tabular}{l}
8 (a) \\
(i) \\
(ii) \\
(b)
\end{tabular} \& \begin{tabular}{l}
Find correlation coefficient \(r\) from \(r^{2}=b_{1} b_{2}\) : \\
State both hypotheses (B0 for \(r \ldots\)): \\
State or use correct tabular one-tail \(r\)-value: \\
State or imply valid method for reaching conclusion: \\
Correct conclusion (AEF, dep *A1, *B1): \\
State or use relevant tabular two-tail \(r\)-value: \\
Find least possible value of \(n\) : \\
SR M1 A1 for stating 16 without explanation B1 for stating 15 without explanation B1 for finding or stating one-tail result 12
\end{tabular} \& \[
\begin{array}{lr}
r=\sqrt{ }(0.38 \times 0.96)=0.604 \& \mathrm{M} 1 * \mathrm{~A} 1 \\
\& \mathrm{~B} 1 \\
\mathrm{H}_{0}: \rho=0, \mathrm{H}_{1}: \rho>0 \& \text { *B1 } \\
r_{10,5 \%}=0.549 \& \mathrm{M} 1 \\
\begin{array}{l}
\text { Reject } \mathrm{H}_{0} \text { if }|r|>\text { tab. value (AEF) } \\
\text { There is positive correlation }
\end{array} \& \mathrm{A} 1 \\
\& \\
r_{16,5 \%}=0.497\left(\text { or r }_{15,5 \%}=0.514\right) \& \mathrm{M} 1 \\
n_{\min }=16 \& \mathrm{~A} 1
\end{array}
\] \& 2
4
4
2 \& 8 \\
\hline \begin{tabular}{l}
9 (i) \\
(ii) \\
(iii) (a) \\
(b) \\
(c)
\end{tabular} \& \begin{tabular}{l}
Relate \(\mathrm{P}(X>x)\) to number of flaws (AEF): \\
Relate this to Poisson distn. (AEF): \\
Find P (number of flaws \(\geq 1\)): \\
(M0 if " 1 - " omitted) \\
Find or state distribution function \(\mathrm{F}(x)\) : \\
Find or state probability density function \(\mathrm{f}(x)\) : \\
S.R. Deduct A1 if (a), (b) interchanged \\
Formulate equation for either quartile value \(Q\) : \\
Find lower quartile \(Q_{1}\) : (AEF) \\
Find upper quartile \(Q_{3}\) : (AEF) \\
Find interquartile range (allow \(Q_{1}-Q_{3}\)):
\end{tabular} \& \& 2
2
1
2

4
4 \& 11

\hline
\end{tabular}

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - May/June 2015	9231	21

\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Question \\
Number
\end{tabular} \& Mark Scheme Details \& \begin{tabular}{l}
Part \\
Mark
\end{tabular} \& Total \\
\hline 10 \& \begin{tabular}{l}
Calculate gradient \(b_{1}\) in \(y-\bar{y}=b_{1}(x-\bar{x})\) : \\
(PA -1 so \(\max 4 / 5\) for 0.93 , giving \(y=7.48\)) \\
Find \(y\) when \(x=7\) from regression line of \(y\) on \(x\) : \\
SR If regression line of \(x\) on \(y\) used: \\
(can earn at most 4/5) \\
Find differences (e.g. \(y-x\)) and sample mean: \\
Estimate population variance (to 3 s.f.): \\
(allow biased here: 0.1469 or \(0.3833^{2}\)) \\
State hypotheses (AEF; B0 for \(\bar{x}\)), e.g.: \\
Calculate value of \(t\) : \\
State or use correct tabular \(t\)-value: \\
(or can compare \(\bar{d}\) with 0.634) \\
Consistent conclusion (AEF, ft on both \(t\)-values): \\
Wrong test can earn only B1 for hypotheses and B1 for conclusion
\end{tabular} \& 5

8 \&

\hline
\end{tabular}

Page 8	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - May/June 2015	9231	21

\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Question \\
Number
\end{tabular} \& Mark Scheme Details \& \begin{tabular}{l}
Part \\
Mark
\end{tabular} \& Total \\
\hline 11A \& \begin{tabular}{l}
Find MI of disc about \(O\) : \\
Find MI of ring about \(O\) : \\
EITHER: Find MI of any rod about \(O\) : \\
OR: \(\quad\) Find MI of 2 collinear rods about \(O\) : \\
Find MI of object about \(O\) : \\
Find MI of object about axis at \(O / /\) to tangent: \\
Find MI of object about tangential axis at \(A\) : \\
Find new MI when particle is attached at \(C\) : \\
Find and use initial angular speed: \\
Find gain in P.E. at instantaneous rest: \\
Find \(u\) by equating to rotational KE: \\
SR: Taking \(A C\) at \(\sin ^{-1}(1 / 4)\) to vertical: \\
(max 6/7) \\
SR: Overlooking added particle can earn \\
M0 B1 M1 A0 A0 M1 A0 (max 3/7)
\end{tabular} \& 3

7 \& 14

\hline 11B \& \& 8
5 \& 14

\hline
\end{tabular}

