Cambridge
International
A Level

Cambridge International Examinations Cambridge International Advanced Level

FURTHER MATHEMATICS

Paper 2
MARK SCHEME
Maximum Mark: 100

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - May/June 2016	9231	23

Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol $\sqrt{ }$ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.

B2/1/0 means that the candidate can earn anything from 0 to 2 .
The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10 .

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - May/June 2016	9231	23

The following abbreviations may be used in a mark scheme or used on the scripts:
AEF Any Equivalent Form (of answer is equally acceptable)
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)

CWO Correct Working Only - often written by a "fortuitous" answer
ISW Ignore Subsequent Working
MR Misread
PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)

SOS See Other Solution (the candidate makes a better attempt at the same question)
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through \downarrow " marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR-2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - May/June 2016	9231	23

Question Number	Mark Scheme Details	Part Mark	Total
1	Relate u^{2}, v^{2} at lowest and highest points by energy: $1 / 2 m v^{2}=1 / 2 m u^{2}-2 m g a$ $\left[v^{2}=u^{2}-4 a g\right]$ Find tension T_{1} at lowest point by using $F=m a$: $T_{1}=m u^{2} / a+m g$ Find tension T_{2} at highest point by using $F=m a$:	B1 B1 B1 M1 M1 A1 (M1) (M1 A1)	[6]
2	Take moments for rod about e.g. A : or P : or B : or midpoint of $A B$: or below B : Formulate 2 more independent eqns. for forces, e.g.: Resolve forces on rod horizontally: Resolve forces on rod vertically: (or further independent moment eqn.) Eliminate θ from 3 independent eqns. for forces Relate F_{A} and R_{A} Find $A P \quad$ from eqns. in R_{P}, R_{A} and F_{A} : $\begin{aligned} & R_{P} \times A P=W \times a \cos \theta \\ & +2 W \times 2 a \cos \theta \\ & {[=5 W a \cos \theta=3 W a]} \\ & R_{A} \times A P \cos \theta-F_{A} \times A P \sin \theta \\ & =W \times(A P-a) \cos \theta \\ & -2 W \times(2 a-A P) \cos \theta \\ & R_{A} \times 2 a \cos \theta-F_{A} \times 2 a \sin \theta \\ & +R_{P} \times(2 a-A P)=W \times a \cos \theta \\ & R_{P} \times(A P-a)-R_{A} \times a \cos \theta \\ & +F_{A} \times a \sin \theta=2 W \times a \cos \theta \\ & R_{A} \times 2 a \cos \theta+R_{P} \cos \theta \times(2 a-A P) \cos \theta \\ & -R_{P} \sin \theta \times A P \sin \theta=W \times a \cos \theta \end{aligned}$ $\begin{aligned} & \left.F_{A}=R_{P} \sin \theta=4 R_{P} / 5\right] \\ & 3 \mathrm{~W}-R_{A}=R_{P} \cos \theta\left[=3 R_{P} / 5\right] \\ & {[\sin \theta=4 / 5, \cos \theta=3 / 5]} \\ & F_{A}=2 / 3 R_{A} \\ & {\left[R_{P}=5 \mathrm{~W} / 3, F_{A}=4 \mathrm{~W} / 3, R_{A}=2 \mathrm{~W}\right]} \\ & A P=9 a / 5 \text { or } 1 \cdot 8 a \end{aligned}$	M1 A1 B1 B1 M1 M1 M1 A1	[8]
3	Find c by equating transverse acceln. to 2 at $t=3$: $\text { EITHER: } \quad \text { Find radial force at } t=3 \text { : }$ $\begin{aligned} & 2 \times 3+c=2, c=-4 \\ & F_{R}=0.2\left(3^{2}+3 c+d\right)^{2} / 0.5 \\ & {\left[=0.4(d-3)^{2}\right]} \end{aligned}$ Find transverse force at $t=3$ by $F=m a$: Equate $F_{T}{ }^{2}+F_{R}{ }^{2}$ to $\{(2 \sqrt{ } 17) / 5\}^{2}$: OR: \quad Find radial acceln. at $t=3:$ Valid use below of transverse acceln. at $t=3: a_{T}=2$ Equate $a_{T}{ }^{2}+a_{R}{ }^{2}$ to $\{(2 \sqrt{ } 17) /(5 \times 0 \cdot 2)\}^{2}$: $\begin{aligned} & 0 \cdot 4^{2}+0 \cdot 4^{2}\left(3^{2}+3 c+d\right)^{4}=68 / 25 \\ & {\left[F_{R}{ }^{2}=2 \cdot 56, F_{R}=1 \cdot 6\right]} \\ & a_{R}=\left(3^{2}+3 c+d\right)^{2} / 0 \cdot 5 \\ & {\left[=2(d-3)^{2}\right]} \\ & \mathrm{t} t=3: a_{T}=2 \\ & \}^{2}: \\ & {\left[a_{R}{ }^{2}=64, a_{R}=8\right]} \\ & l^{2} \end{aligned}$ Find d by solving with $c=-4$, e.g.: (both values reqd. for A1) $(d-3)^{2}=4, d=1$ or 5 (Omitting transverse comp. may earn M1 A1 M1 A1 B0 M0, max 4/8)	M1 A1 M1 A1 B1 M1 A1 (M1 A1) (B1) (M1 A1) A1	[8]

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - May/June 2016	9231	23

\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Question \\
Number
\end{tabular} \& Mark Scheme Details \& \begin{tabular}{l}
Part \\
Mark
\end{tabular} \& Total \\
\hline 4 \& \begin{tabular}{l}
Find or state MI of \(\operatorname{rod} A B\) about axis at \(A\) : \\
Find MI of disc about axis at \(A\) : \\
(M1 for either) \\
Find MI of object about axis at \(A\) : \\
Find angular speed \(\omega\) when \(A B\) vertical by energy: \\
(AEF) \\
Find speed of \(B\) from \(r \omega\) (AEF)
\[
\begin{aligned}
\& I_{A B}=1 / 34 m(3 a)^{2}+4 m(3 a)^{2} \\
\& \text { or }(4 / 3) 4 m(3 a)^{2}\left[=48 m a^{2}\right] \\
\& I_{\text {disc }}=1 / 2 m(2 a)^{2}+m(8 a)^{2} \\
\& {\left[=66 m a^{2}\right]} \\
\& I=(48+66) m a^{2}=114 m a^{2} \mathbf{A . G .} \\
\& 1 / 2 I \omega^{2} \\
\& =(4 \times 3+8) m g a\left(1-\cos 60^{\circ}\right) \\
\& \text { or }^{\circ}(5 m g \times 4 a)\left(1-\cos 60^{\circ}\right) \\
\& \omega^{2}=10 m g a / 57 m a^{2}=10 g / 57 a \\
\& : 6 a \sqrt{ }(10 g / 57 a) \\
\& =\sqrt{ }(120 a g / 19) \text { or } 2 \cdot 51 \sqrt{ }(a g) \\
\& {[\text { allow } 7.95 \sqrt{ } a(g=10)} \\
\& \text { or } 7.87 \sqrt{ } a(g=9 \cdot 8 \text { or } 9 \cdot 81)]
\end{aligned}
\]
\end{tabular} \& \[
\begin{array}{|c}
\text { M1 A1 } \\
\text { A1 } \\
\text { A1 } \\
\\
\text { M1 A1 } \\
\text { A1 } \\
\text { M1 A1 }
\end{array}
\] \& [4]

[5]

\hline | (i) |
| :--- |
| (ii) | \& | For $A \& B$ use conservation of momentum, e.g.: (m may be omitted here and below) |
| :--- |
| Use Newton's law of restitution (consistent signs): |
| Combine to find/verify v_{A} and find v_{B}, e.g.: |
| For $B \& C$ use conservation of momentum, e.g.: |
| Use Newton's law of restitution (consistent signs): |
| Combine to find k using $v_{C}=v_{A}$, e.g.: |
| Find $v_{B}{ }^{\prime}$ (may be found earlier): |
| EITHER: Find final KE, $E_{\text {final }}$, of 3 particles: |
| OR $\begin{array}{ll} \text { OR: } & \text { Find } 1^{\text {st }} \operatorname{loss} / \text { gain in KE (M1 for either) } \\ & \text { Find } 2^{\text {nd }} \operatorname{loss} / \text { gain in KE (A1 for both): } \end{array}$ |
| Find loss in KE (ignore sign for M1) |
| Hence find percentage loss in KE: $\begin{aligned} & 5 m v_{A}+m v_{B}=5 m u \\ & v_{B}-v_{A}=(4 / 5) u \\ & 6 v_{A}=(5-4 / 5) u \text {, } \\ & v_{A}=7 u / 10 \text { A.G. and } v_{B}=3 u / 2 \end{aligned}$ $\begin{aligned} & m v_{B}^{\prime}+k m v_{C}=m v_{B} \\ & v_{C}-v_{B}^{\prime}=(4 / 5) v_{B} \\ & (k+1) v_{C}=(1+4 / 5) v_{B} \\ & k+1=27 / 7, k=20 / 7 \mathbf{A . G .} \\ & \\ & v_{B}^{\prime}=-u / 2 \\ & 1 / 2 m v_{A}^{2}+1 / 2 m v_{B}^{\prime 2}+1 / 2 k m v_{C}^{2} \\ & =1 / 2 m u^{2}(49 / 20+1 / 4+7 / 5) \\ & =(41 / 20) m u^{2} \text { or } 2 \cdot 05 m u^{2} \end{aligned}$ |
| $: L_{1}=1 / 25 m u^{2}-1 / 25 m v_{A}^{2}-1 / 2 m v_{B}^{2}$ |
| $L_{2}=1 / 2 m v_{B}{ }^{2}-1 / 2 m v_{B}{ }^{\prime 2}-1 / 2 k m v_{C}{ }^{2}$ $\left[L_{1}=(3 / 20) m u^{2}, L_{2}=(3 / 10) m u^{2}\right]$ $1 / 25 m u^{2}-E_{\text {final }}$ or $L_{1}+L_{2}$ $\left[=(9 / 20) m u^{2}\right]$ |
| $100(9 / 20) m u^{2} /\left(1 / 25 m u^{2}\right)=18 \%$ | \& \[

$$
\begin{array}{|c}
\hline \text { M1 } \\
\text { M1 } \\
\text { A1 } \\
\text { M1 } \\
\text { M1 } \\
\text { M1 A1 } \\
\text { B1 } \\
\text { M1 } \\
\text { A1 } \\
\text { (M1) } \\
\text { (A1) } \\
\text { M1 } \\
\text { A1 }
\end{array}
$$
\] \& [3]

[4]

[5]

\hline | (i) |
| :--- |
| (ii) | \& | State mean and variance of N : $\begin{aligned} & \mathrm{E}(N)=1 / 1 / 4=4 \\ & \operatorname{Var}(N)=3 / 4 /(1 / 4)^{2}=12 \end{aligned}$ |
| :--- |
| Find prob. of succeeding in at most 4 attempts: $\begin{aligned} & \mathrm{P}(N \leq 4)=1-(3 / 4)^{4} \\ & \text { or } \quad 1 / 4\left\{1+3 / 4+(3 / 4)^{2}+(3 / 4)^{3}\right\} \\ & =175 / 256 \text { or } 0.684 \end{aligned}$ |
| Find prob. of succeeding in more than 6 attempts: $\begin{aligned} & \mathrm{P}(N>6)=(3 / 4)^{6} \\ & =729 / 4096 \text { or } 0.178 \end{aligned}$ | \& | B1 |
| :--- |
| B1 |
| M1 A1 |
| B1 | \& [2]

$[2]$
$[1]$

\hline
\end{tabular}

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - May/June 2016	9231	23

Question Number	Mark Scheme Details	Part Mark	Total
7 (i) (ii) (iii)	Find $\mathrm{F}(t)$ by integration: Estimate λ by equating $1-F(12)$ to $280 / 1000$: Estimate mean μ of T : Relate new exponential parameter λ^{\prime} to λ : (B 1 dependent on $* \mathrm{M} 1$) Find $\mathrm{P}(t \leq 12)$: Find percentage: $\begin{aligned} & \mathrm{F}(t)=1-\mathrm{e}^{-\lambda t} \\ & \mathrm{e}^{-12 \lambda}=0 \cdot 28 \\ & \lambda=(-\ln 0.28) / 12=0.106 \\ & \mu=1 / \lambda=9.43 \\ & \lambda^{\prime}=1 / 1 \cdot 25 \mu=\lambda / 1 \cdot 25 \text { or } 0.8 \lambda \\ & {\left[=0.08486 \text { or } 11 \cdot 78^{-1}\right]} \\ & \mathrm{P}(t \leq 12)=1-\mathrm{e}^{-12 \lambda^{\prime}} \\ & =1-\mathrm{e}^{-1.018} \text { or } 1-0.28^{0.8} \\ & =63.9 \% \end{aligned}$	B1 *M1 A1 B1 B1 M1 A1 A1	[3] [1] [4]
8	State assumption, e.g.: State hypotheses, e.g.: (AEF; B0 for $\bar{x} \ldots$ or if ambiguous) Consider differences e.g. Before - After: Calculate sample mean and estimate population variance: (allow biased here: $1 \cdot 0675$ or $1 \cdot 033^{2}$) Calculate value of t : State or use correct tabular t-value: (or compare \bar{d} with $t_{7,0.975} \mathrm{~s} / \sqrt{ } 8=0.924$) Consistent conclusion(AEF, $\sqrt{ }$ on both t-values): Normal distribution(s) $\mathrm{H}_{0}: \mu_{\text {Before }}-\mu_{\text {Affer }}=0$, $\mathrm{H}_{1}: \mu_{\text {Before }}-\mu_{\text {After }}>0$ $\begin{array}{lllllllll}0.7 & 3.0 & -0.6 & 0.2 & 0.3 & 0.9 & 0 & 1.5\end{array}$ $\bar{d}=6 / 8=0.75$ and $s^{2}=\left(13.04-6^{2} / 8\right) / 7$ $=61 / 50$ or $1 \cdot 22$ or $1 \cdot 105^{2}$ $t=\bar{d} /(s / \sqrt{ } 8)=1.92$ $t_{7,0.975}=2 \cdot 36[5]$ [Accept H_{0} :] No improvement in athletes' times Wrong (hypothesis) test can earn only: B1 for assumption, B1 for hypotheses	B1B1M1M1M1 A1 B1B1 ${ }^{\wedge}$	[8]
9	State (at least) null hypothesis (AEF): $\mathrm{H}_{0}:$ No difference in preferences Find expected values (to 1 d.p.): $21 \cdot 86718 \cdot 13329 \cdot 33310 \cdot 667$ (lose A1 if one error or rounded to integers) $19 \cdot 13315 \cdot 86725 \cdot 6679 \cdot 333$ Calculate value of χ^{2} (to 3 s.f.): $\chi^{2}=0 \cdot 449+2 \cdot 075+0.015+0.510$ $+0.513+2 \cdot 371+0 \cdot 017+0.583$ $=6 \cdot 53$ (allow $6 \cdot 52)$ State or use correct tabular χ^{2} value (to 3 s.f.): $\chi_{3,0.9}=6 \cdot 25[1]$ State or imply valid method for conclusion e.g.: Reject H_{0} if $\chi^{2} \geqslant$ tabular value Correct conclusion, from correct values: (AEF) Difference in preferences	B1 M1 A2 M1 A1 B1 M1 A1	[9]

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - May/June 2016	9231	23

Question Number	Mark Scheme Details		Part Mark	Total
10 (i)	Find correlation coefficient r : (working may be implied)	$\begin{aligned} & r=S_{x y} / \sqrt{ }\left(S_{x x} S_{y y}\right) \text { with e.g. } \\ & \left.S_{x y}=872-68 \times 63 / 5=15 \cdot 2 \text { (or } 3.04\right) \\ & \left.S_{x x}=942-68^{2} / 5=17 \cdot 2 \text { (or } 3 \cdot 44\right) \\ & \left.S_{y y}=815-63^{2} / 5=21 \cdot 2 \text { (or } 4 \cdot 24\right) \\ & r=0.796 \end{aligned}$	$\underset{\text { *A1 }}{\text { M1 A1 }}$	[3]
(ii)	State both hypotheses (B0 for $r \ldots$): State or use correct tabular one-tail r-value: State or imply valid method for conclusion e.g.: Correct conclusion(AEF, dep *A1, *B1):	$\begin{aligned} & \mathrm{H}_{0}: \rho=0, \mathrm{H}_{1}: \rho>0 \\ & r_{5}, 5 \%=0 \cdot 805 \\ & \text { Accept } \mathrm{H}_{0} \text { if } r<\text { tab. value (AEF) } \\ & \text { No positive correlation } \end{aligned}$	$\begin{gathered} \text { B1 } \\ \text { *B1 } \\ \text { M1 } \\ \text { A1 } \end{gathered}$	[4]
(iii)	Calculate gradient p in $y-\bar{y}=p(x-\bar{x})$: and find q :	$\begin{aligned} & S_{x y}=2092-164 \times 149 / 12=55.67 \\ & S_{x x}=2308-164^{2} / 12=66.67 \\ & {\left[S_{y y}=1911-149^{2} / 12=60.92\right]} \\ & p=S_{x y} / S_{x x}=0.835 \\ & q=149 / 12-p \times 164 / 12 \\ & =12.42-0.835 \times 13.67=1.00[5] \end{aligned}$	$\begin{aligned} & \text { M1 A1 } \\ & \text { M1 A1 } \end{aligned}$	[4]
(iv)	Estimate mark from regression line when $x=13$: Consistent valid comment on reliability, e.g.: $\left(\sqrt{ } \text { on } r^{\prime}\right) \quad \text { or }$ or	$y=11 \cdot 9 \text { so mark }=12$ Reliable since 13 (or 12) in range Reliable since $r^{\prime}=0.874 \approx 1$ Reliable since $r^{\prime}>r_{12,5 \%}=0.497$	B1 $\text { B1 } \wedge^{\wedge}$	[2]
	Find $A P_{0}$ by equating equilibrium tensions and wt.: (Lose A1 for one incorrect term) or if $e=A P_{0}-0 \cdot 8$:	$\begin{aligned} & 8\left(A P_{0}-0 \cdot 8\right) / 0 \cdot 8 \\ & =4\left(2-A P_{0}\right) / 1 \cdot 2+0 \cdot 2 g \\ & 8 e / 0 \cdot 8=4(1 \cdot 2-e) / 1 \cdot 2+0 \cdot 2 g \\ & {[e=9 / 20 \text { or } 0 \cdot 45]} \\ & A P_{0}=5 / 4 \text { or } 1 \cdot 25[\mathrm{~m}] \end{aligned}$	M1 A2 A1	[4]
	Apply Newton's law at general point, e.g.: (lose A1 for each incorrect term) or Simplify to give standard SHM eqn, e.g.: SC: B1 if no derivation (max 3/6) State or find period using $2 \pi / \omega$ with $\omega=\sqrt{ }(200 / 3)$:	$\begin{aligned} & \pm 0 \cdot 2 \mathrm{~d}^{2} x / \mathrm{d} t^{2}=-8\left(A P_{0}-0 \cdot 8+x\right) / 0 \cdot 8 \\ & +4\left(2-A P_{0}-x\right) / 1 \cdot 2+0 \cdot 2 g \\ & \pm 0 \cdot 2 \mathrm{~d}^{2} y / \mathrm{d} t^{2}=8\left(A P_{0}-0 \cdot 8-y\right) / 0 \cdot 8 \\ & -4\left(2-A P_{0}+y\right) / 1 \cdot 2+0 \cdot 2 g \\ & \mathrm{~d}^{2} x / \mathrm{d} t^{2}=-(10 x+10 x / 3) / 0 \cdot 2 \\ & =-200 x / 3 \\ & T=2 \pi \sqrt{ }(3 / 200)=\pi \sqrt{ }(3 / 50) \\ & \text { or } 0 \cdot 245 \pi \text { or } 0 \cdot 770[\mathrm{~s}] \end{aligned}$	$\begin{gathered} \text { M1 A2 } \\ \text { A1 } \\ \text { M1 A1 } \end{gathered}$	[6]
	Find or state displacement x at midpoint: Find or state amplitude a : Find speed v from $v^{2}=\omega^{2}\left(a^{2}-x^{2}\right)$:	$\begin{aligned} & x=1 \cdot 6-A P_{0}[=0.35] \\ & a=1.65-A P_{0}[=0.4] \\ & v^{2}=(200 / 3)\left(0.4^{2}-0.35^{2}\right) \\ & v=\sqrt{2} \cdot 5, v=1.58\left[\mathrm{~m} \mathrm{~s}^{-1}\right] \end{aligned}$	$\begin{gathered} \text { B1 } \\ \text { B1 } \\ \text { M1 A1 } \end{gathered}$	[4]

Page 8	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - May/June 2016	9231	23

Question Number	Mark Scheme Details	Part Mark	Total
11 (b)	State hypotheses (B0 for $\bar{x}_{A} \ldots$), e.g.: Estimate both popn. variances: and (allow biased here: 6.81 or 2.610^{2} and 4.331 or 2.081^{2}) and Estimate combined variance (may be implied): (to $3 \mathrm{s.f}$) Calculate value of $z($ or $-z)$: (to 3 s.f.) State or use correct tabular z value:(to 3 s.f.) (or can compare $\bar{x}_{B}-\bar{x}_{A}=1.258$ with 1.19) Correct conclusion (AEF, $\sqrt{ }$ on z, dep $* B 1$) $\begin{aligned} & \mathrm{H}_{0}: \mu_{B}=\mu_{A}, \mathrm{H}_{1}: \mu_{B}>\mu_{A} \\ & s_{A}{ }^{2}=\left(1910 \cdot 8-256^{2} / 40\right) / 39 \\ & s_{B}^{2}=\left(3148 \cdot 8-382 \cdot 9^{2} / 50\right) / 49 \\ & s_{A}{ }^{2}=6 \cdot 985 \text { or } 454 / 65 \text { or } 2 \cdot 643^{2} \\ & s_{B}^{2}=4 \cdot 419 \text { or } 2 \cdot 102^{2} \\ & s^{2}=s_{A}^{2} / 40+s_{B}^{2} / 50 \\ & =0 \cdot 263-\text { or } 0 \cdot 513^{2} \\ & z=\left(\bar{x}_{B}-x_{A}\right) / s \\ & =(7 \cdot 658-6 \cdot 4) / s \\ & =1 \cdot 258 / 0 \cdot 5128=2 \cdot 45 \\ & z_{0.99}=2 \cdot 326(\mathbf{S C}: \text { allow } 2 \cdot 358) \\ & : z>\text { tabular value } \\ & \text { so } \mu_{B} \text { is greater than } \mu_{A} \end{aligned}$ Note: Basing test on equal variances can earn first 4 marks only Calculate value of z using width of interval: (allow M1 for $z=1.82 / s$) Find $\Phi(z)$ and value of α : (overlooking $\%$ is misread; M0 for $\alpha=96.2$ or finding $100-\alpha$) $\begin{aligned} & z=1.82 / 2 s=0.91 / 0.5128 \\ & =1.77[46] \\ & \Phi(z)=0.962=1-1 / 2(1-\alpha / 100) \\ & \alpha=100\{1-2(1-0.962)\} \\ & =92.4 \end{aligned}$		[10]

