Cambridge International Advanced Level

MARK SCHEME for the October/November 2014 series

9231 FURTHER MATHEMATICS

9231/21

Paper 2, maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – October/November 2014	9231	21

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally
 independent unless the scheme specifically says otherwise; and similarly when there are several
 B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B
 mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more
 steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously 'correct' answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme		Paper
	Cambridge International A Level – October/November 2014	9231	21

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no 'follow through' from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become 'follow through √" marks. MR is not applied when the candidate misreads his own figures – this is regarded as an error in accuracy. An MR–2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

Page 4

Mark SchemeSyllabusCambridge International A Level – October/November 20149231

s Paper 21

Question Number	Mark Scheme Details		Part Mark	Total
1	Use conservation of momentum, e.g.:	$2mv_A + mv_B = 8mu - 3mu \qquad B1$		
	Use restitution (must be consistent with prev. eqn.):	$v_A - v_B = -e (4u + 3u) \qquad B1$		
	Solve for v_A (or $3v_A$):	$v_A = \frac{1}{3}(5-7e)u \qquad \qquad \text{M1}$		
		$[v_B = \frac{1}{3}(5+14e)u]$		
	Find lower limit on <i>e</i> for which $v_A < 0$:	$5 - 7e < 0, e > \frac{5}{7}$ or 0.714 M1 A1	5	[5]
2	Find speed component along barrier:	$V\cos\beta = 4\cos\alpha$ B1		
	Find speed component normal to barrier:	$V\sin\beta = 0.4 \times 4\sin\alpha$ B1		
	Find β by eliminating α with $V = 2$:	$V^{2} = 2^{2} = 1.6^{2} \sin^{2} \alpha + 16 \cos^{2} \alpha \qquad M1$ 1 - sin^{2} \alpha + 0.16 sin^{2} \alpha = 0.25		
		$\sin^2 \alpha = \frac{0.75}{0.84} = \frac{25}{28} = 0.8929$		
		$\underline{or} \cos^2 \alpha = \frac{3}{28} = 0.1071$ $\alpha = 1.24 \text{ rad } or \ 70.9^\circ \qquad \text{M1 A1}$	5	[5]
3	Use conservation of energy:	$\frac{1}{2}mv_B^2 = \frac{1}{2}mu^2 + 2mga\cos\alpha \qquad B1$		
		$[v_B^2 = u^2 + \frac{12ag}{5}]$		
	Use $F = ma$ radially at A and B (B1 for either):	$R_A = \frac{mu^2}{a} - mg\cos\alpha \qquad B1$		
		$R_B = \frac{m v_B^2}{a} + mg \cos \alpha$		
	Equate R_B to 10 R_A :	$\frac{mv_B^2}{a} + mg\cos\alpha = 10\left(\frac{mu^2}{a} - mg\cos\alpha\right)$ M1 A1		
	Eliminate v_B^2 :	$u^{2} + 4ag\cos\alpha = 10u^{2} - 11ag\cos\alpha$ $\left[v_{B}^{2} = \frac{17ag}{5}\right]$		
		$u^{2} = (\frac{5ag}{3}) \cos \alpha = ag$ A.G. M1 A1	6	

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – October/November 2014	9231	21

Use conservation of energy for loss of contact: $\frac{1}{2}mv^{2} = \frac{1}{2}mu^{2} + mga(\cos\alpha - \frac{1}{2}mv_{B}^{2} - mga(\cos\alpha + \cos\theta))$			
Use $F = ma$ radially with $R = 0$: $\frac{mv^2}{a} = mg\cos\theta$	B1		
Eliminate v^2 with $u^2 = ag$ to find $\cos\theta$. $ga + 2ga (\cos\alpha - \cos\theta) = ga \cos\theta$ $\cos\theta = \frac{1}{3}(2\cos\alpha + 1) = \frac{11}{15}$		4	[10]
4 (i) Relate F_A and R_A using $F = \mu R$: $F_A = \frac{1}{3}R_A$	B1		
Resolve horizontally: $R_B = F_A \ [= \frac{1}{3}R_A]$	B1		
Resolve vertically (may not be needed here): $S = mg - R_A$	B1		
<i>EITHER:</i> Take moments about C: $R_B \frac{1}{4} l \sin \alpha + F_A \frac{3}{4} l \sin \alpha$			
$+ mg \frac{1}{4}l\cos\alpha = R_A \frac{3}{4}l\cos\alpha$	M1 A1		
Combine, using $\tan \alpha = \frac{3}{4}$, to find R_A : $R_A + 3R_A + 4mg = 12R_A$			
$R_A = \frac{1}{2} mg \mathbf{A.G.}$	M1 A1		
<i>OR:</i> Take moments about <i>A</i> : $R_B l \sin \alpha + S \frac{3}{4} l \cos \alpha$			
$= mg \frac{1}{2} l \cos \alpha \qquad (1)$	M1 A1)		
Combine, using $\tan \alpha = \frac{3}{4}$, to find R_A : $R_A + 3(mg - R_A) = 2mg$			
$R_A = \frac{1}{2} mg \mathbf{A.G.} \tag{1}$	M1 A1)		
<i>OR:</i> Take moments about <i>B</i> : $F_A l \sin \alpha + mg \frac{1}{2} l \cos \alpha$			
$= R_A l \cos \alpha + S \frac{1}{4} l \cos \alpha \qquad (1)$	M1 A1)		

[Pag	e 6	Mark Scheme	e	Syllabus	Paper	
	- J		Cambridge International A Level – C		9231	21	
		OR:	Combine, using $\tan \alpha = \frac{3}{4}$, to find R_A : Take moments about <i>D</i> :	$R_{A} + 2mg = 4R_{A} + mg - R_{A}$ $R_{A} = \frac{1}{2}mg \text{ A.G.}$ $R_{A} \frac{3}{4}l\cos\alpha$ $= R_{B}l\sin\alpha + mg\frac{1}{4}l\cos\alpha$	(M1 A1)		
			Combine, using $\tan \alpha = \frac{3}{4}$, to find R_A :	$3R_A = R_A + mg$ $R_A = \frac{1}{2}mg \text{ A.G.}$	(M1 A1)	7	
(i	ii)	Use	Hooke's Law to relate extn. <i>e</i> and nat. length	L: $S = \frac{1}{2}mg = \frac{2mge}{L}, e = \frac{1}{4}$	L B1		
		Find	length of CD:	$CD = \frac{3}{4}l\sin\alpha = \frac{9l}{20}$	B1		
		Com	bine to find <i>L</i> :	$L - \frac{1}{4}L = \frac{9l}{20}, \ L = \frac{3l}{5}$	M1 A1	4	[11]

F	Page 7 Mark Scheme Cambridge International A Level – October/November 2014		Syllabus	Paper	\neg	
		Cambridge International A Level -	- October/November 2014	9231	21	
5 (i) Fin	d extn. of either string by equating equil. ten	sions: $\frac{6mge_A}{3a} = \frac{mg(3a - e_A)}{2a}$ $\frac{or}{3a} = \frac{6mg(3a - e_B)}{3a} = \frac{mge_B}{2a}$ $e_A = \frac{3a}{5} \underline{or} e_B = \frac{12a}{5}$	M1 A1 A1		
	Fin	d <i>AO</i> : A.G.	$AO = 3a + e_A \underline{or} 6a - e_B$	= 3.6 <i>a</i> B1	4	
(ii) Ap	ply Newton's law at general point, e.g.:	$m \frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = \frac{mg(3a - e_A - x)}{2a}$			
		(lose A1 for each incorrect term)	$-\frac{6mg(e_A + x)}{3a}$ $\underline{or} m \frac{d^2 y}{dt^2} = -\frac{mg(3a - e_A)}{2a}$ $+ \frac{6mg(e_A - y)}{3a}$	+ y) M1 A2		
		nplify to give standard SHM eqn, e.g.: S.R. : B1 if no derivation (max 3/6)	$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = -\frac{5gx}{2a}$	A1		
	Fin	d period <i>T</i> using SHM with $\omega = \sqrt{\left(\frac{5g}{2a}\right)}$:	$T = 2\pi \sqrt{\left(\frac{2a}{5g}\right)} \qquad (A.E.F.)$	M1 A1	6	
(iii) Fin	Ind max speed using ωA with $A = 0.2 a$:	$v_{max} = \sqrt{\left(\frac{5g}{2a}\right)} \times 0.2a$ = $\sqrt{\left(\frac{ag}{10}\right)} \underline{or} \sqrt{a}$ (A.E)	.F.) M1 A1	2	[12]
6	Est	imate population variance for combined sam	ple: $s^{2} = \frac{s_{X}^{2}}{50} + \frac{s_{Y}^{2}}{60}$ $= \frac{1391}{1500} \ \underline{or} \ 0.9273 \ \underline{or} \ 0.965$	30 ² M1		
	Cal	culate value of z (to 2 d.p., either sign):	$z = \frac{1.8}{s} = 1.869$	M1 A1		
	Fin	d $\Phi(z)$ and set of possible values of α (to 1 d	n).			
		(M1 A0 for $\alpha \le 3.1 \text{ or } \alpha > 93.8$)	$\Phi(z) = 0.9692 [\underline{or} \ 96.92\%]$ $\alpha \le (\underline{or} <) \ 6.2 \ (\text{allow } 6.1)$	M1 A1	5	[5]

	Pag			Syllabus	Paper	
		Cambridge International A Level –	October/November 2014	9231	21	
		S.R. Assuming equal population variances:	Explicit assumption	(B1)		
		Find pooled estimate of common variance s^2	$\frac{(49s_x^2 + 59s_y^2)}{108} = \frac{2777}{108} \underline{or} 25.71 \underline{or} 5.071^2$			
		and calculate value of z (to 2 d.p.):	$z = \frac{1.8}{s\sqrt{50^{-1} + 60^{-1}}} = 1.854$	(M1 A1)		
		Find $\Phi(z)$ and values of α (to 1 d.p.): (M1 A0 for $\alpha \leq 3.2 \text{ or } \alpha > 93.6$)	$\Phi(z) = 0.9681 [\underline{or} 96.81\%]$ $\alpha \leq (\underline{or} <) 6.4$	(M1 A1)		
7	(i)	State or find $E(T)$:	$E(T) = \frac{1}{0.01} = 100$	B1	1	
((ii)	State or use eqn. for median <i>m</i> of <i>T</i> :	$\left[-e^{-0.01t}\right]_{0}^{m} = \frac{1}{2}$ (A.E.F.)	M1		
		Find value of <i>m</i> :	$e^{-0.01m} = \frac{1}{2}, m = 100\ln 2 = 69$	9-3 M1 A1	3	
		Find $P(T > 20)$:	$P(T > 20) = 1 - (1 - e^{-0.2})$			
		S.R. B1 for 0.181	$= e^{-0.2} \underline{or} 0.819$	M1 A1	2	[6]
8		Find mean of sample data for use in Poisson distr	$\lambda = \frac{225}{100} = 2.25$	B1		
		State (at least) null hypothesis (A.E.F.):	H ₀ : Poisson distn. fits data	B1		
		Find expected values $\frac{100\lambda^r e^{-\lambda}}{r!}$ (to 1 d.p.):	10.540 23.715 26.679 20.009	9 11.255		
		(ignore incorrect final value here for M1)	5.065 1.899 0.6105 0.2275	M1 A1		
		Combine last four cells so that exp. value ≥ 5 :	O_i : 16 14 4 E_i : 20.009 11.255 7.8	02 *M1		
		Calculate value of χ^2 (to 1 d.p.; A1 dep *M1):	$\chi^2 = 1.189 + 0.582 + 5.690 + 0.6695 + 1.853 = 10.8 \text{ (allow 10.7)}$	0 + 0.803 M1 A1		
		State or use consistent tabular value (to 1 d.p.):	$\chi_{4, 0.975}^2 = 11.14$ (if cells com [$\chi_{7, 0.975}^2 = 16.01, \chi_{5, 0.975}^2 =$			
		Consistent conclusion (A.E.F., \checkmark^{h} on two χ^{2} value	s): $\chi^2 < 11.1$ so Poisson distn. fit	s B1√ [≜]	9	[9]

Pa	age 9	Mark Sche		Syllabus	Paper	
		Cambridge International A Level	- October/November 2014	9231	21	
) (i)	Calc	culate gradient <i>b</i> in $y - \overline{y} = b(x - \overline{x})$:	$S_{xy} = 513 - 73 \times \frac{64}{10} = 45$ $S_{xx} = 651 - \frac{73^2}{10} = 118 \cdot 1$	5.8		
			$b = \frac{S_{xy}}{S_{xx}} = 0.388$	M1 A1		
	Find	regression line of y on x :	$y = \frac{64}{10} + 0.388 \left(x - \frac{73}{10}\right)$ $= 0.388 x + 3.57$	M1		
			$\frac{or}{1181} \frac{(458x + 4215)}{1181}$	A1	4	
(ii)	Find	correlation coefficient r:	$S_{yy} = 462 - \frac{64^2}{10} = 52.4$			
			$r = \frac{S_{xy}}{\sqrt{\left(S_{xx}S_{yy}\right)}} = 0.582$	M1 A1	2	
(iii)	Find	y when $x = 10$:	y = 7.45	B1		
	State	e valid comment on reliability, e.g.:	Not reliable as value of r is sm <u>or</u> reliable since $x = 10$ is in ra- <u>or</u> is near mean		2	
(iv)	Form	nulate condition for N:	Require one-tail $r_{N,1\%} < r$ [0]	0·582] M1		
	Iden	tify critical value near <i>r</i> using table:	15 <u>or</u> 16 ($\sqrt[n]{}$ on r)	A1√		
	State	e set of possible values of <i>N</i> :	$N \ge 16$	Al	3	[1]

Page 10	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – October/November 2014	9231	21

10	Find $F(x)$ for $1 \le x \le 3$:	$F(x) = \frac{1}{2} (x - 1)$	B1		
	Find G(y) from $Y = X^3$ for $1 \le x \le 3$:	$G(y) = P(Y < y) = P(X^{3} < y)$ = $P(X < y^{\frac{1}{3}}) = F(y^{\frac{1}{3}})$			
	(result may be stated)	$= \frac{1}{2} (y^{\frac{1}{3}} - 1); (1 \le y \le 27) \text{M1 A}$	A1; B1		
	State $G(y)$ for other values of <i>y</i> :	0 $(y < 1)$ <u>and</u> 1 $(y > 27)$	B1	5	
	Find $g(y)$ for $1 \le y \le 27$ (\checkmark^{h} on $G(y)$):	$g(y) = \frac{y^{-\frac{2}{3}}}{6} \ \underline{or} \ \frac{1}{6y^{\frac{2}{3}}}$	B1√ [™]		
	Sketch $g(y)$ for $1 \le y \le 27$ with $g(y) = 0$ on either side of this interval		B1 B1	3	
	Find mean of <i>Y</i> :	$E(Y) = \int y g(y) dy = \int (\frac{y^{\frac{1}{3}}}{6}) dy$			
	(no need to find median $= 8$)	$= \left[\frac{y^{\frac{4}{3}}}{8}\right]_{1}^{27} = 10$ N	/11 A1		
	Find probability <i>Y</i> lies between median and mean	: $G(10) - G(8) \underline{or} G(10) - \frac{1}{2} $			
		$= \frac{1}{2} \left(10^{\frac{1}{3}} - 8^{\frac{1}{3}} \right)$			
	(2 s.f. sufficient)	$\underline{or} \left \frac{1}{2} \left(10^{\frac{1}{3}} - 1 \right) - \frac{1}{2} \right = 0.077 [2]$			
		Ň	/1 A1	4	[12]

Pa	age 11	Mark Schem		Syllabus	Paper	
	C	ambridge International A Level – (October/November 2014	9231	21	
11a (i)	EITLIED.	State on find (by Lawas) ML of Vahay	+ <i>AD</i> .			
11a (i)	EITHER:	State or find (by \perp axes) MI of <i>X</i> abou	1			
			$I_X = \frac{1}{2}mr^2$	M1 A1		
		State or find MI of Y (or Z) about AB :	$I_{\rm v} = \frac{1}{2}mr^2 + mr^2 = \frac{3mr^2}{2}$	- M1 A1		
			2 2 2			
		State or find (by \perp axes) MI of <i>W</i> about	ut <i>AB</i> :			
			$I_W = \frac{1}{2} 3mR^2 = \frac{1}{2} 3mr^2(1)$	$+\frac{2}{\sqrt{3}}$		
			$T_W = \frac{1}{2} - \frac{1}{2} $	$\frac{1}{3}$ (3)		
			$=\frac{1}{2}(7+4\sqrt{3})mr^{2}$	M1 A1		
			2			
		Find MI of object about AB:	$I = \left(\frac{1}{2} + 2 \times \frac{3}{2} + \frac{7}{2} + 2\sqrt{3}\right) r$	m ²		
		Find Wir of object about AB.				
			$= (7 + 2\sqrt{3}) mr^2$ A.G.	M1 A1		
	OR:	State or find MI of <i>X</i> , <i>Y</i> or <i>Z</i> about cen	tre O:			
			$I_X = mr^2 + m\left(\frac{2r}{\sqrt{3}}\right)^2 = \frac{7r}{\sqrt{3}}$	mr^2 (M(1 A 1))		
			$I_X - mr + m\left(\frac{1}{\sqrt{3}}\right) = -$	3 (WIT AT)		
			2			
		State or find MI of <i>W</i> about <i>O</i> :	$I_W = 3mR^2 = 3mr^2(1 + \frac{2}{3}\sqrt{1 + \frac{2}{3}})$	$(3)^2$		
			$= (7 + 4\sqrt{3}) mr^2$	(M1 A1)		
				. 2		
		Find MI of object about O:	$I_O = 3I_X + I_W = (14 + 4\sqrt{3})$	3) mr ² (M1 A1)		
				()		
		Find (by \perp axes) MI of object about A				
			$I = \frac{1}{2} I_0 = (7 + 2\sqrt{3}) mr^2$	A.G.		
			2	(M1 A1)	8	
(ii)	Find new	MI of object plus particle about <i>AB</i> :	$I' = I + 9mR^2$			
(1)	1 ma new	with of object plus particle about <i>ID</i> .	$= I + 3 (7 + 4\sqrt{3}) mr^{2}$			
			$= 14 (2 + \sqrt{3}) mr^{2}$	M1 A1		
			1 .			
	Find eqn t	for angular speed ω using energy:	$\frac{1}{2}I'\omega^2 = 9mg \times R\sin 60^\circ$	M1 A1		
			_			
	Substitute	and simplify to find ω :	$\omega^{2} = \frac{9mgR\sqrt{3}}{I'}$ $\omega = \sqrt{\frac{9g}{14r}} \frac{or}{\sigma} 0.802\sqrt{\frac{g}{r}}$			
	2	······				
	(AEF)		$\omega = \sqrt{\frac{9g}{2}} \frac{or}{or} 0.802 \sqrt{\frac{g}{2}}$	M1 A1	6	[14]
			V 14r $V r$			

Page 12	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – October/November 2014	9231	21

11b	Estimate population variance using <i>A</i> 's sample: (allow use of biased: $\sigma_{A,8}^2 = 2.23 \text{ or } 1.493^2$)	$s_{A}^{2} = \frac{\left(1422.34 - \frac{106^{2}}{8}\right)}{7}$ $= \frac{446}{175} \ \underline{or} \ 2.549 \ \underline{or} \ 1.596^{2}$	M1 A1		
	Find confidence interval:	$\frac{106}{8} \pm t \sqrt{\left(\frac{{s_x}^2}{8}\right)}$	M1		
	State or use correct tabular value of <i>t</i> :	$t_{7,0.975} = 2.36 [5]$	A1		
	Evaluate C.I. correct to 1 d.p.:	13.25 ± 1.335 <u>or</u> [11.9, 14.6]	A1	5	
	State suitable assumptions (A.E.F.):	Distribution of <i>B</i> is Normal with same population variance	B1		
	State hypotheses (B0 for \overline{a}) e.g.:	$H_0: \mu_A = \mu_B, H_1: \mu_A > \mu_B$	B1		
	Estimate (or imply) <i>B</i> 's population variance: (allow use of biased: $\sigma_{B,6}^2 = 1.899 \text{ or } 1.378^2$	$s_B^2 = \frac{\left(971.53 - \frac{75.9^2}{6}\right)}{5}$			
	and find pooled estimate of common variance s	$= 2.279 \ or \ 1.510^2$			
		$s^{2} = \frac{\left(7s_{A}^{2} + 5s_{B}^{2}\right)}{12}$ $= \frac{(17.84 + 11.395)}{12}$ $= 2.436 \text{ or} 1.561^{2}$	M1		
	Calculate value of t (to 2 d.p., either sign):	$t = \frac{(13.25 - 12.65)}{s\sqrt{\left(8^{-1} + 6^{-1}\right)}}$ $= \frac{0.6}{0.8430} = 0.712$	M1 A1		
	State or use correct tabular <i>t</i> -value (to 2 d.p.): (or compare 0.6 with 1.782 $s\sqrt{(8^{-1} + 6^{-1})} =$	$t_{12,0.95} = 1.782$	B1		
	Consistent conclusion (AEF, h on two <i>t</i> values)): [Accept H ₀]; mean lengths are the same	B1√ [^]	7	
	Find confidence interval for the difference:	$13.25 - 12.65 \pm t s \sqrt{8^{-1} + 6^{-1}}$) M1		
	Evaluate C.I. with $t_{12,0.975} = 2.179$, to 2 d.p.:	$0.6 \pm 1.84 \ \underline{or} \ [-1.24, 2.44]$	A1	2	[14]