MARK SCHEME for the May/June 2013 series

9231 FURTHER MATHEMATICS

9231/13

Paper 1, maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – May/June 2013	9231	13

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking *g* equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – May/June 2013	9231	13

The following abbreviations may be used in a mark scheme or used on the scripts:

- AEF Any Equivalent Form (of answer is equally acceptable)
- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)
- SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR–2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA –1 This is deducted from A or B marks in the case of premature approximation. The PA –1 penalty is usually discussed at the meeting.

	Page 4	ge 4 Mark Scheme Sy GCE A LEVEL – May/June 2013		bus 31	Paper 13	•
Qu No	Commentary	Solution	Marks	Part Mark	Total	
1	Simplifies.	f(r+1) - f(r) = r(r+1)! - (r-1)r! = r!(r ² + r - r + 1) = r!(r ² + 1)		M1 A1		
	Uses difference method.	$\sum_{n=1}^{n} = f(2) - f(1) + f(3) - f(2) + \dots + f(n+1) - f(n)$		M1		
		= n(n+1)! - 0 = n(n+1)!		A1		
	Obtains result.	$\therefore \sum_{n+1}^{2n} = 2n(2n+1)! - n(n+1)!$		A1	5	[5]
		(Or directly using $\sum_{n+1}^{2n} = f(2n+1) - f(n+1)$ from the				
		method of differences.)				
2	Makes substitution. Squares.	$y^{2} - 4y + 3y^{\frac{1}{2}} - 2 = 0$ $\Rightarrow 9y = 4 + y^{4} + 16y^{2} - 4y^{2} + 16y - 8y^{3}$ (N B. Must see both terms in y^{2})		M1 M1		
	Obtains result.	$\Rightarrow y^{4} - 8y^{3} + 12y^{2} + 7y + 4 = 0 $ (AG)		A1	3	
		$S_2 = 0^2 - 2 \times (-4) = 8$		B1		
		$S_8 = 8S_6 - 12S_4 - 7S_2 - 16$		M1		
		$\Rightarrow S_8 = 8S_6 - 12S_4 - 56 - 16 = 8S_6 - 12S_4 - 72 \text{ (AG)}$		A1	3	[6]
		Alternatively – for final two marks.				
		$S_2 = 8$, $S_3 = -9$, $S_4 = 40$, $S_5 = -60$, $S_6 = 203$, $S_7 = -37$ $S_8 = 1072$ (generated by substitution of roots in equati and summing.) Then $8S_6 - 12S_4 - 72 = 1624 - 480 - 72 = 1072 = S_8$ M1 requires a complete method, A1 if all correct.	78 ons			
3	Differentiates once.	$\frac{d}{dx}(e^x \sin x) = e^x \sin x + e^x \cos x$		B1		
	Rearranges.	$= \sqrt{2}e^{x} \left(\frac{1}{\sqrt{2}}\sin x + \frac{1}{\sqrt{2}}\cos x\right)$		M1		
	Shows true for $n = 1$.	$=\sqrt{2}e^x\sin\left(x+\frac{1}{4}\pi\right) \Rightarrow H_1 \text{ true}.$		A1		
	States inductive hypothesis. (May be seen by implication.)	$H_k : \frac{d^k}{dx^k} (e^x \sin x) = \left(\sqrt{2}\right)^k e^x \sin\left(x + \frac{1}{4}k\pi\right)$		B1		
	Differentiates.	$\frac{\mathrm{d}^{x+1}}{\mathrm{d}x^{k+1}} = \left(\sqrt{2}\right)^k \left(\sin\left(x + \frac{1}{4}k\pi\right)\mathrm{e}^x + \mathrm{e}^x\cos\left(x + \frac{1}{4}k\pi\right)\right)$		M1		
	Rearranges.	$= \left(\sqrt{2}\right)^{k+1} e^{x} \left(\frac{1}{\sqrt{2}} \sin\left(x + \frac{1}{4}k\pi\right) + \frac{1}{\sqrt{2}} \cos\left(x + \frac{1}{4}k\pi\right)\right)$		A1	7	[7]

	Page 5	Mark Scheme		bus	Paper	r
		GCE A LEVEL – May/June 2013	923	31	13	
	Shows $H_k \Rightarrow H_{k+1}$	$= \left(\sqrt{2}\right)^{k+1} e^x \sin\left(x + \frac{1}{4}(k+1)\pi\right) \implies H_{k+1} \text{ true.}$		A1		
	and states conclusion.	∴,by PMI, true for all positive integers n. (CWO)				
4	Differentiates.	$3y^2y' - (3x^2y' + 6xy) = 0$ (B1 for 1 st term and = 0, but allow recovery)		B1B1		
		At (1,-2) $12y' - (3y' - 12) = 0$ $\Rightarrow 9y' = -12 \Rightarrow y' = -\frac{4}{3}$ (AG)		B1		
	Differentiates again (One mark for each pair of terms)	a. $3y^2y'' + 6y(y')^2 - (6xy' + 3x^2y'' + 6xy' + 6y) = $ At (1,-2)	= 0	B1B1 B1		
	cuch pair of terms.)	B1 for each pair of terms. 3^{rd} mark includes = 0, but allow recovery.				
	Substitutes values.	$12y'' - 12 \times \frac{16}{9} - \left(-8 + 3y'' + 6 \times \frac{-4}{3} - 12\right) = 0$		M1		
	Obtains result.	$\Rightarrow 9y'' = -\frac{20}{3} \Rightarrow y'' = -\frac{20}{27}$ (Allow - 0.741)		A1	8	[8]
5	Finds I_1 .	$I_{1} = \int_{0}^{1} x e^{-x^{2}} dx = \left[-\frac{e^{-x^{2}}}{2} \right]_{0}^{1} = \frac{1}{2} - \frac{1}{2e} (AG)$		M1A1	2	
		$I_{2n+1} = \int_0^1 x^{2n+1} \mathrm{e}^{-x^2} \mathrm{d}x$				
	Integrates by parts.	$= \left[-x^{2n} \frac{e^{-x^2}}{2} \right]_0^1 + \int_0^1 2nx^{2n-1} \frac{e^{-x^2}}{2} dx$		M1A1		
	Obtains reduction formula.	$= \left[-\frac{1}{2e} \right] - \left[0 \right] + nI_{2n-1} = nI_{2n-1} - \frac{1}{2e} (AG)$		A1	3	
	Attempts to use reduction formula a least once.	It $I_3 = \frac{1}{2} - \frac{1}{2e} - \frac{1}{2e} = \frac{1}{2} - \frac{1}{e}$		M1		
	Obtains I_5 , or som intermediate result,	$I_{5} = 2\left(\frac{1}{2} - \frac{1}{e}\right) - \frac{1}{2e} = 1 - \frac{5}{2e}$		A1		
	Obtains I_7 .	$I_7 = 3\left(1 - \frac{5}{2e}\right) - \frac{1}{2e} = 3 - \frac{8}{e}$		A1	3	[8]
6	Reduces to echelor form	$\begin{pmatrix} -2 & 5 & 3 & -1 \\ 0 & 1 & -4 & -2 \\ 6 & -14 & -13 & 1 \\ 1 & 1 & -2 & -11 \end{pmatrix} \sim \begin{pmatrix} -2 & 5 & 3 & -1 \\ 0 & 1 & -4 & -2 \\ 0 & 1 & -4 & -2 \\ 0 & 7 & -1 & -23 \end{pmatrix}$		M1A1		
	(N.B. Allow matrix with a row of zeros – not in	$ = \left \sim \begin{pmatrix} -2 & 5 & 3 & -1 \\ 0 & 1 & -4 & -2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 27 & -9 \end{pmatrix} \sim \begin{pmatrix} -2 & 5 & 3 & -1 \\ 0 & 1 & -4 & -2 \\ 0 & 0 & 3 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix} (\alpha \neq 0) \right $		A1		

	Page 6	Mark Scheme	Syllabus	Paper	
		GCE A LEVEL – May/June 2013	9231	13	
	echelon form.)				
	Solves set of equations.	$ \begin{array}{r} -2x + 5y + 3z - t = 0 \\ y - 4z - 2t = 0 \\ 3z - t = 0 \end{array} $			
	Obtains basis.	$\Rightarrow K_1 \begin{cases} \begin{pmatrix} 25\\10\\1\\3 \end{pmatrix} \end{cases} (OE)$	M1 A1		
	Solves equations in second case.	If $\alpha = 0$ $-2x + 5y + 3z - t = 0$ y - 4z - 2t = 0 (23) (9) (5) (0)	M1		
	Obtains basis.	$\Rightarrow K_2 \begin{cases} 8 \\ 2 \\ 0 \end{cases}, \begin{pmatrix} 4 \\ 0 \\ 2 \end{cases} \end{cases} (OE) \text{ e.g.} \begin{pmatrix} 0 \\ 2 \\ -4 \end{pmatrix} \text{ or } \begin{pmatrix} 10 \\ 9 \\ -23 \end{pmatrix}$	A1A1	8	[8]
6 ctd	Other Methods				
ciù	Working from the start with equations	Sets up both sets of equations	M1A1		
		Solves in the case $\alpha \neq 0$ States $K_{1.}$ correctly	M1A1 A1		
		Solves in the case $\alpha = 0$ States K_{2} correctly	M1A1 A1		[8]
	Use of transpose matrices	Uses row operations to reduce transpose matrices to echelon form.			
		When $\alpha \neq 0$			
		$\mathbf{M}^{T} \sim \begin{pmatrix} -2 & 0 & 6 & 1 \\ 0 & 2 & 2 & 7 \\ 0 & 0 & 0 & 45 \\ 0 & 0 & 0 & 0 \end{pmatrix} \text{ by } \begin{pmatrix} r_{1} \\ 5r_{1} + 2r_{2} \\ 5r_{1} + 2r_{3} - 4r_{4} \\ 50r_{1} + 20r_{2} + 2r_{3} + 6r_{4} \end{pmatrix}$	M1A1		
		$\Rightarrow K_1 \begin{cases} 50\\ 20\\ 2\\ 6 \end{cases} \text{ or } \begin{cases} 25\\ 10\\ 1\\ 3 \end{cases} \end{cases}$	M1A1		
		$\mathbf{M}^{T} \sim \begin{pmatrix} -2 & 0 & 6 & 0 \\ 0 & 2 & 2 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \text{ by } \begin{pmatrix} r_{1} \\ 5r_{1} + 2r_{2} \\ 23r_{1} + 8r_{2} + 2r_{3} \\ -9r_{1} - 4r_{2} - 2r_{4} \end{pmatrix}$	M1A1		

	Page 7	Mark Scheme	Syllabus	Pape	r
		GCE A LEVEL – May/June 2013	9231	13	
					1
		$\Rightarrow K_2 \begin{cases} 23 \\ 8 \\ 2 \\ 0 \end{cases}, \begin{pmatrix} 9 \\ 4 \\ 0 \\ 2 \end{cases} \end{cases}$	M14	A 1	[8]
7	Differentiates twice and substitutes to find value of λ .	$y' = \lambda e^{-x} - \lambda x e^{-x}, \ y'' = -2\lambda e^{-x} + \lambda x e^{-x}$ $y'' + 5y' + 4y = 3\lambda e^{-x} = 6e^{-x} \Longrightarrow \lambda = 2$	B1B M1A	31 A1 4	
	Finds complementary function	$(m+1)(m+4) = 0 \Rightarrow m = -1 \text{ or } -4$ C.F: $y = Ae^{-x} + Be^{-4x}$	M1 A1	l	
	and hence general solution.	G.S.: $y = Ae^{-x} + Be^{-4x} + 2xe^{-x}$	Al B1		
	Differentiates G.S. Uses initial conditions to find	$\Rightarrow y' = -Ae^{-x} - 4Be^{-4x} + 2e^{-x} - 2xe^{-x}$ $y(0) \Rightarrow A + B = 2, y'(0) \Rightarrow 2 - A - 4B = 3$ $\Rightarrow A = 3 \text{ and } B = -1$	MI	L	
	constants, and obtain particular solution.	$\Rightarrow y = 3e^{-x} - e^{-4x} + 2xe^{-x}$	A1	6	[10]
8	Differentiates and attempts	$\dot{x} = 3t$, $\dot{y} = 3t^2$ \Rightarrow $\frac{ds}{dt} = \sqrt{9t^2 + 9t^4} = 3t\sqrt{1+t^2}$	M14	41	
	to find $\frac{dt}{dt}$. Integrates to find arc	$s = \int_0^2 3t(1+t^2)^{\frac{1}{2}} dt = \left[(1+t^2)^{\frac{3}{2}} \right]_0^2$	М	1	
	lengui.	$\Rightarrow s = 5\sqrt{5} - 1 \qquad \text{(Allow 10.2)}$	A	1 4	
	Uses correct formulae for <i>x</i> -coordinate.	$\overline{x} = \frac{\int_0^6 xy dx}{\int_0^6 y dx} = \frac{\int_0^2 3\frac{t^2}{2} \cdot t^3 \cdot 3t dt}{\int_0^2 t^3 \cdot 3t dt}$	M Al	1	
	Finds value by integration.	$=\frac{\frac{3}{2}\int_{0}^{2}t^{6}dt}{\int_{0}^{2}t^{4}dt}=\frac{\frac{3}{2}\left[\frac{1}{7}t^{7}\right]_{0}^{2}}{\left[\frac{1}{5}t^{5}\right]_{0}^{2}}=\frac{3}{2}\times\frac{5}{7}\times4=\frac{30}{7}$ (Or 4.2)	9) A1	1	
	Uses correct formulae for <i>y</i> -coordinate.	$\overline{y} = \frac{\frac{1}{2} \int_0^6 y^2 dx}{\int_0^6 y dx} = \frac{\frac{1}{2} \int_0^2 .t^6 .3t dt}{\int_0^2 t^3 .3t dt}$	М	1	
	Finds value by integration.	$= \frac{\frac{1}{2}\int_{0}^{2}t^{7}dt}{\int_{0}^{2}t^{4}dt} = \frac{\frac{1}{2}\left[\frac{1}{8}t^{8}\right]_{0}^{2}}{\left[\frac{1}{5}t^{5}\right]_{0}^{2}} = \frac{1}{2} \times \frac{5}{8} \times 8 = \frac{5}{2} (\text{Or } 2.5)$	M Al	1 l 7	[11]
	Alternative layout:	$\int \int dx dx (D1) \int dx dx (D1) \int \int d^{-1} dx (D1) \int dx dx $			
	Eliminating t	J yux (B1) J xyux (B1) $\int \frac{1}{2}y^2 dx$ (B1) (in terms of t. Then eward M1A1 for each of \overline{z} and \overline{z} .)		
	2	Then award WITAT for each of x and y. A rea (P1) $\int x dx$ (P1) $\int \frac{1}{x^2} dx$ (P1)			
		Area (B1) $\int xy dx$ (B1) $\int \frac{1}{2}y^2 dx$ (B1) Then exceed M1A1 for each of $\frac{1}{2}$			
		Then award with AT for each of x and y .			

	Page 8	8 Mark Scheme Sy		Paper	
		GCE A LEVEL – May/June 2013	9231	13	
9	Proves initial result.	Ae = λe BMe = MAM ⁻¹ Me = (MAIe) = MAe = M λe = λMe (CWO) (Me $\neq 0$ since M non-singular $\Rightarrow \lambda$ is an eigenvalue.)	B1 M1 A1	3	
	States eigenvalues. Finds one eigenvector. All correct.	Eigenvalues are: -1, 1, 2 $\lambda = -1 \qquad \begin{vmatrix} i & j & k \\ 0 & 2 & 1 \\ 0 & 2 & 4 \end{vmatrix} = \begin{pmatrix} 6 \\ 0 \\ 0 \end{pmatrix} \sim \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ $\lambda = 1 \qquad \begin{vmatrix} i & j & k \\ -2 & 2 & 1 \\ 0 & 2 & 4 \end{vmatrix} = \begin{pmatrix} 8 \\ 8 \\ 0 \end{pmatrix} \sim \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$ $\lambda = 2 \qquad \begin{vmatrix} i & j & k \\ -3 & 2 & 1 \\ 0 & -1 & 4 \end{vmatrix} = \begin{pmatrix} 9 \\ 12 \\ 3 \end{pmatrix} \sim \begin{pmatrix} 3 \\ 4 \\ 1 \end{pmatrix}$	B1 M1A1 A1	4	
	States eigenvalues of B .	Eigenvalues of B are -1 , 1, 2 (1) (1) (4)	B1		
	Finds eigenvectors of B. (N.B. Same as A 's is M0)	Corresponding eigenvectors are: $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 4 \\ 1 \end{bmatrix}$	M1A1 A1	4	[11]
10	Uses identity. Uses sine-cosine link. Obtains result.	$2\sin\theta\cos\left(\theta - \frac{1}{4}\pi\right) = \sin\left(2\theta - \frac{1}{4}\pi\right) + \sin\left(\frac{1}{4}\pi\right)$ $= \cos\left(\frac{1}{2}\pi - 2\theta + \frac{1}{4}\pi\right) + \frac{1}{\sqrt{2}}$ $= \cos\left(2\theta - \frac{3}{4}\pi\right) + \frac{1}{\sqrt{2}} (AG)$	M1 M1 A1	3	
	Sketches graph.	Closed loop through origin, in correct position.	B1		
	Obtains line of symmetry.	For line of symmetry $2\theta - \frac{3}{4}\pi = 0 \Rightarrow \theta = \frac{3}{8}\pi$.	B1B1	3	
	Uses area of sector formula. Rearranges. Integrates correctly.	$A = \frac{1}{2} \int_{0}^{\frac{3}{4}\pi} \left\{ \cos^{2} \left(2\theta - \frac{3}{4}\pi \right) + \sqrt{2} \cos \left(2\theta - \frac{3}{4}\pi \right) + \frac{1}{2} \right\} d\theta$ $= \frac{1}{2} \int_{0}^{\frac{3}{4}\pi} \left\{ \frac{1}{2} \cos \left[4\theta - \frac{3}{2}\pi \right] + \sqrt{2} \cos \left[2\theta - \frac{3}{4}\pi \right] + 1 \right\} d\theta$ $= \left[\frac{1}{16} \sin \left(4\theta - \frac{3}{2}\pi \right) + \frac{1}{2\sqrt{2}} \sin \left(2\theta - \frac{3}{4}\pi \right) + \frac{\theta}{2} \right]_{0}^{\frac{3}{4}\pi}$ $= \left[-\frac{1}{16} + \frac{1}{4} + \frac{3}{8}\pi \right] - \left[\frac{1}{16} - \frac{1}{4} \right]$	M1 A1 dM1A1 dM1		
	Obtains given answer.	$=\frac{3}{8}(\pi+1)$ (AG) N.B Method marks are dependent in final part. If $\frac{1}{2}$ factor missing throughout – award M's (Max If $2 \times \frac{1}{2} \int_{0}^{\frac{3}{8}} r^{2} d\theta$, penultimate line is $= \left[\frac{3}{8}\pi\right] - \left[\frac{1}{8} - \frac{1}{2}\right]$	A1	6	[12]

	Page 9		Mark Scheme	Sylla	bus	Paper	•
			GCE A LEVEL – May/June 2013	923	31	13	
					[
11 E	Finds PQ .		$\mathbf{PQ} = \begin{pmatrix} -3 + \mu - 3\lambda \\ -6\mu - 2\lambda \\ 12 - 2\mu + \lambda \end{pmatrix}$		M1A1		
	Finds direction of common perpendent	of dicular.	$\begin{vmatrix} i & j & k \\ 3 & 2 & -1 \\ 1 & -6 & -2 \end{vmatrix} = \begin{pmatrix} -10 \\ 5 \\ -20 \end{pmatrix} \sim \begin{pmatrix} 2 \\ -1 \\ 4 \end{pmatrix}$		M1		
	(Or uses scalar p of PQ with the direction vector line.)	oroduct of each					
	Obtains two correquations. e.g.	rect	$-3 + \mu - 3\lambda = 12\mu + 4\lambda$ $-24\mu - 8\lambda = -12 + 2\mu - \lambda$		A1 A1		
	Solves.		$\mu = 1$, $\lambda = -2$		M1A1	0	
	Finds p and q .		$\mathbf{p} = \begin{pmatrix} 4+3\lambda \\ 7+2\lambda \\ -1-\lambda \end{pmatrix} = \begin{pmatrix} -2 \\ 3 \\ 1 \end{pmatrix} \mathbf{q} = \begin{pmatrix} 1+\mu \\ 7-6\mu \\ 11-2\mu \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ 9 \end{pmatrix}$		A1	0	
	Finds common perpendicular.		$\mathbf{AB} \times \mathbf{PQ} = \begin{vmatrix} i & j & k \\ -1 & 0 & 4 \\ 2 & -1 & 4 \end{vmatrix} = \begin{pmatrix} 4 \\ 12 \\ 1 \end{pmatrix}$		M1A1		
	Finds PA (or Q A or QB)	A or PB	$\mathbf{PA}\begin{pmatrix} 6\\4\\-2 \end{pmatrix} \mathbf{QA}\begin{pmatrix} 2\\6\\-10 \end{pmatrix} \mathbf{PB}\begin{pmatrix} 3\\4\\10 \end{pmatrix} \mathbf{QB}\begin{pmatrix} -1\\6\\2 \end{pmatrix}$		B1		
	Uses triple scala to find shortest c	r product listance.	$\frac{\begin{pmatrix} 6\\4\\-2 \end{pmatrix} \cdot \begin{pmatrix} 4\\12\\1 \end{pmatrix}}{\sqrt{16+144+1}} = \frac{24+48-2}{\sqrt{161}} = \frac{70}{\sqrt{161}} = 5.52$		M1A1 A1	6	[14]
	Alternative for la marks:	ast 4	Plane through e.g. <i>P</i> in direction PA : 4x + 12y - 29 = 0. Award M1A1. Then use of distance of point from line formula to get $\frac{70}{\sqrt{161}}$. Award M1A1.				

[Page 10		Mark Scheme	Sylla	ibus	Paper	,
	*		GCE A LEVEL – May/June 2013	92	31	13	
					1	I	
11 0	Draws Argand d	liagram.	Shows position of 3 cube roots on Argand diag	ram.	B1	1	
	E.g. Uses De M ³	's	$1 = \cos 2k\pi + i\sin 2k\pi \; ; \; k \; = \; 0, 1, 2.$				
			$\Rightarrow \omega = \cos\frac{2\pi}{3} + \sin\frac{2\pi}{3} \text{ and } \omega^2 = \cos\frac{4\pi}{3} + \sin\frac{2\pi}{3}$	$\frac{4\pi}{3}$	M1A1		
	Gives a + ib form	n.	$\omega = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$, $\omega^2 = -\frac{1}{2} - i\frac{\sqrt{3}}{2}$		A1	3	
			S.C. Award B1 for cube roots without/incorrect working. Look out for algebraic forms from $(z-1)(z^2+z+1) = 0$ then squaring one to get other, which scores M1A1 A1.	the			
	Expands determ	inant.	$(6-\omega^3)-3\omega(9\omega^2-2\omega^2)+2\omega^2(3\omega-4\omega)$		M1A1		
	Uses $\omega^3 = 1$ etc		= 5 - 21 - 2 = -18		B1	3	
	Uses $a + ib$ form correctly.	18	$z = 4\sqrt{3} \left(-\frac{1}{2} - \frac{\sqrt{3}}{2}i \right) - 4 \left(\frac{\sqrt{3}}{2} - \frac{1}{2}i \right)$		M1A1		
	Simplifies		$= -2\sqrt{3} - 6i - 2\sqrt{3} + 2i = -4(\sqrt{3} + i)$		A1		
	Rearranges		$= -8\left(\frac{\sqrt{3}}{2} + \frac{1}{2}i\right)$				
	Reverts to r, θ for	orm.	$= -8\left(\cos\frac{1}{6}\pi + i\sin\frac{1}{6}\pi\right) = 8\left(\cos\frac{7}{6}\pi + i\sin\frac{7}{6}\pi\right)$	π)	M1A1	5	
	One cube root.		Cube roots are: $2\left(\cos\frac{7}{18}\pi + i\sin\frac{7}{18}\pi\right)$,		B1		
	Other two.		$2\left(\cos\frac{19}{18}\pi + i\sin\frac{19}{18}\pi\right), \ 2\left(\cos\frac{31}{18}\pi + i\sin\frac{31}{18}\pi\right)$	π	B1	2	[14]
					1		