MARK SCHEME for the May/June 2014 series

9231 FURTHER MATHEMATICS

9231/21
Paper 2, maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE A LEVEL - May/June 2014	$\mathbf{9 2 3 1}$	21

Page 3	Mark Scheme	Syllabus	Paper
	GCE A LEVEL - May/June 2014	9231	21

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{11}{*}{3} \& Use conservation of momentum, e.g.: \& $m v_{A}+9 m v_{B}=m u$ \& M1 \& \multirow[b]{11}{*}{7

3} \&

\hline \& Use Newton's law of restitution (consistent signs): \& $v_{B}-v_{A}=e u$ \& M1 \& \&

\hline \& Relate v_{A} to v_{B} using K.E. (A.E.F.): \& $1 / 2 m v_{A}{ }^{2}+1 / 29 m v_{B}^{2}=1 / 4 m u^{2}$ \& M1 \& \&

\hline \& Combine two eqns to find v_{A} and v_{B} e.g.: \& $v_{A}=(1-9 e) u / 10, v_{B}=(1+\mathrm{e}) u / 10$ \& \& \&

\hline \& \& or $v_{A}, v_{B}=-u / 2, \mathrm{u} / 6[$ or $7 u / 10, u / 30]$ \& M1 A1 \& \&

\hline \& Use in 3rd eqn to find e, e.g.: \& $(1-9 e)^{2}+9(1+e)^{2}=50$ \& \& \&

\hline \& (A0 if finally $\pm 2 / 3$) \& $90 e^{2}=40, e=2 / 3$ \& M1 A1 \& \&

\hline \& Use Newton's law of restitution with \& $v_{C}=2 v_{B}{ }^{\prime}$, e.g.: $v_{C}-v_{B}{ }^{\prime}=e v_{B}, v_{B}{ }^{\prime}=2 / 3 v_{B}$ \& B1 \& \&

\hline \& \& $\left[v_{B}=u / 6, v_{B}=u / 9, v_{C}=2 u / 9\right]$ \& \& \&

\hline \& Use conservation of momentum to find k : \& $9 m v_{B}{ }^{\prime}+k m v_{C}=9 m v_{B}$ \& \& \&

\hline \& \& $9 v_{B}{ }^{\prime}+2 k v_{B}^{\prime}=13 \cdot 5 v_{B}^{\prime}, \quad k=9 / 4$ \& M1 A1 \& \& 10

\hline
\end{tabular}

Page 4	Mark Scheme	Syllabus	Paper
	GCE A LEVEL - May/June 2014	9231	21

\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
4 \\
(i) \\
(ii) \\
(iii)
\end{tabular} \& \begin{tabular}{l}
Use conservation of energy at lowest point: Use \(F=m a\) radially at lowest point: Eliminate \(v^{2}\) to find \(R \quad\left[v^{2}=2 \cdot 3 g a\right]\) : \\
Use conservation of energy at \(B\) to find \(V_{B}\) : \\
(A.E.F.) \\
Use vertical component \(v_{B}\) of speed \(V_{B}\) at \(B\) : Find height \(h\) reached above \(B\) : Find height \(h\) reached above level of \(O\) :
\end{tabular} \& \[
\begin{aligned}
\& 1 / 2 m v^{2}=1 / 2 m u^{2}+m g a \\
\& R-m g=m v^{2} / a \\
\& R=m u^{2} / a+3 m g=3 \cdot 3 m g \\
\& \\
\& 1 / 2 m V_{B}^{2}=1 / 2 m u^{2}+m g a \sin \theta \\
\& V_{B}^{2}=(0 \cdot 3+0 \cdot 5) g a, V_{B}=\sqrt{ }(0 \cdot 8 g a) \\
\& \text { or } 2 \sqrt{ }(g a / 5) \text { or } 0 \cdot 894 \sqrt{ }(g a) \\
\& v_{B}=V_{B} \cos \theta\left[=1 / 4 \sqrt{ } 15 V_{B}=\sqrt{ }(3 / 4 g a)\right] \\
\& h=v_{B}^{2} / 2 g=3 a / 8 \\
\& h-a \sin \theta=3 a / 8-1 / 4 a=a / 8 \quad \text { A.G. }
\end{aligned}
\] \& B1
B1
B1
M1A1
A1
M1
M1 A1
A1 \& 3

3

4 \& 10

\hline 5 \& | Find MI of components about A : |
| :--- |
| (M1 for $B C$ or $C D$) |
| Find total MI about A : |
| (OR can first find total MI about centre of mass) |
| State or imply total mass acts at mid-point of $A C$ |
| Use eqn of circular motion to find $d^{2} \theta / d t^{2}$: Approximate $\sin \theta$ by θ and substitute for I : |
| Find period $T=2 \pi / \omega$ with $\omega=\sqrt{ }(49 g / 384 a)$: | \& \& \[

$$
\begin{array}{r}
\text { M1 A1 } \\
\text { B1 } \\
\text { B1 } \\
\text { M1 A1 } \\
\text { A1 } \\
\text { A1 } \\
\text { M1 } \\
\text { M1 A1 } \\
\text { A1 } \\
\\
\\
\text { B1 }
\end{array}
$$
\] \& 8

5 \& 13

\hline
\end{tabular}

Page 5 Mark Scheme	Syllabus	Paper	
	GCE A LEVEL - May/June 2014	9231	21

\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
\[
6
\] \\
(i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
State or find the expected value of \(X\) : using \(p=1 / 4\) : \\
Find \(P(X=4)\) : \\
Find \(P(X<6)\) : \\
S.R. Using \(p=1 / 2\) can earn B0 M1 A0 M0 A0
\end{tabular} \& \[
\begin{aligned}
\& E(X)=1 / p=1 / 1 / 4=4 \\
\& P(X=4)=(3 / 4)^{3} 1 / 4=27 / 256 \text { or } 0 \cdot 105 \\
\& P(X<6)=1-(3 / 4)^{5} \\
\& \text { or }\left\{1+3 / 4+(3 / 4)^{2}+(3 / 4)^{3}+(3 / 4)^{4}\right\} 1 / 4 \\
\& =781 / 1024 \text { or } 0.763
\end{aligned}
\] \& B1
M1 A1
M1 A1 \& 1
2

2 \& 5

\hline | 7 |
| :--- |
| (ii) | \& | State probability density function of T : |
| :--- |
| Find $\mathrm{P}(T>2000)$: |
| S.R. $1-\mathrm{e}^{-2}=0.865$ earns B1 only (max $1 / 3$) |
| State inequality for t (lose A1 if $=$ or \leq): |
| Solve for $t_{\text {max }}$: |
| (Omitting power 10 earns $0 / 4$; |
| using $1-(\exp (-0.001 t))^{10}$ can earn M1 A0 M1 A0 only) | \& \[

$$
\begin{align*}
& \mathrm{f}(t)=0.001 \exp (-0.001 t) \quad(t \geq 0) \tag{i}\\
& {[=0 \quad(\text { otherwise } \text { or } t<0)]} \\
& \\
& \mathrm{P}(t>2000)=1-\mathrm{F}(2000) \\
& =1-\left(1-e^{-2}\right)=e^{-2} \text { or } 0.135 \\
& (\exp (-0.001 t))^{10} \geq[\text { or }>] 0.9 \\
& t_{\max }=(\ln 0.9) /(-0.01)=10.5
\end{align*}
$$
\] \& B1

M1
M1 A1
M1 A1
M1 A1 \& 3
4 \& 8

\hline
\end{tabular}

Page 6 Mark Scheme	Syllabus	Paper	
	GCE A LEVEL - May/June 2014	9231	21

8	State hypotheses (B0 for $\bar{\chi} \ldots$): Estimate both popln. variances using two samples: (allow use of biased: $\sigma_{X, 60}{ }^{2}=236$ or $15 \cdot 36^{2}$) (allow use of biased: $\sigma_{Y, 50}{ }^{2}=265$ or $16 \cdot 28^{2}$) Estimate population variance for combined sample: (allow $\sigma_{X, 60}{ }^{2} / 60+\sigma_{Y, 50}{ }^{2} / 50: 9.233$ or 3.039^{2}) Calculate value of z (to 2 d.p., either sign): State or use correct tabular z - value (to 2 d.p.): (or can compare 6 with e.g. $2 \cdot 326 s=7 \cdot 13$ or $7 \cdot 07$) Correct conclusion (A.E.F, $\checkmark_{\text {on } z-\text { values): }}$ S.R. Assuming equal population variances: Find pooled estimate of common variance s^{2} : Calculate value of z (to 2 d.p., either sign): Tabular value; conclusion	$\begin{aligned} & \mathrm{H}_{0}: \mu_{X}=\mu_{Y}, \mathrm{H}_{1}: \mu_{X} \neq \mu_{Y} \\ & S_{x}^{2}=\left(626220-6060^{2} / 60\right) / 59 \\ & {\left[=240 \text { or } 15.49^{2}\right]} \\ & \text { And } s_{Y}^{2}=\left(464500-4750^{2} / 50\right) / 49 \\ & {\left[=270.4 \text { or } 16.44^{2}\right]} \\ & s^{2}=s_{X}^{2} / 60+s_{Y}^{2} / 50 \\ & =9.408 \text { or } 3.067^{2} \\ & z=(101-95) / s \\ & =6 / 3.067=1.96(\text { or } 1.97) \\ & \left.z_{0.99}=2.326 \text { or } 2.33 \text { (allow } 2.36\right) \end{aligned}$ [Accept H_{0}] Claims are the same Hypotheses; Explicit assumption $\begin{aligned} & : \quad s^{2}=\left(626220-6060^{2} / 60+\right. \\ & \left.464500-4750^{2} / 50\right) / 108 \\ & z=6 / s \sqrt{ }(1 / 60+1 / 50)=1.97 \\ & =253.8 \text { or } 15.93^{2} \end{aligned}$ As above)	$\begin{array}{r} \mathrm{B} 1 \\ \text { M1 A1 } \\ \text { M1 A1 } \\ \text { M1 } \\ \text { A1 } \\ \text { B1 } \\ \text { B1ヶ } \\ \text { (B1; B1) } \\ \text { (M1 A1) } \\ \text { (M1 A1) } \\ \text { (A1) } \\ \text { (B1; B1 } \end{array}$	9

Page 7 Mark Scheme	Syllabus	Paper	
	GCE A LEVEL - May/June 2014	9231	21

\begin{tabular}{|c|c|c|c|c|c|}
\hline 9 \& \begin{tabular}{l}
Find expected frequency \(p\) : \\
Find \(q\) by similar method or by using total of 200: \\
State (at least) null hypothesis: \\
Calculate \(\chi^{2}\) (to 3 s.f.): \\
State or use correct tabular \(\chi^{2}\) value (to 3 s.f.):: \\
Valid method for reaching conclusion: \\
Conclusion consistent with correct values (A.E.F):
\end{tabular} \& \[
\begin{aligned}
\& p=200 \int_{2}^{3}(1 / x \ln 8) \mathrm{d} x \\
\& =(200 / \ln 8)[\ln x]_{2}^{3} \\
\& =200 \times 0 \cdot 1950=39 \cdot 00 \quad \text { A.G. } \\
\& q=21 \cdot 46 \text { or } 21 \cdot 45 \\
\& \\
\& \\
\& \left.\mathrm{H}_{0}: \mathrm{f}(x) \text { fits data } \quad \text { (A.E.F. }\right) \\
\& \chi^{2}=0.202+0 \cdot 923+0 \cdot 678+0 \cdot 584 \\
\& +1 \cdot 134+4 \cdot 134+3 \cdot 644=11 \cdot 3 \\
\& \chi_{6,0.95}{ }^{2}=12 \cdot 59 \\
\& \text { Accept } \mathrm{H}_{0} \text { if } \chi^{2} \leqslant \text { tabular value } \\
\& \text { Distribution fits observations }
\end{aligned}
\] \& \[
\begin{array}{r}
\text { M1A1 } \\
\text { M1A1 } \\
\text { B1 } \\
\text { M1A1 } \\
\text { B1 } \\
\text { M1 } \\
\text { A1 }
\end{array}
\] \& 4
6 \& 10 \\
\hline 10 \& \begin{tabular}{l}
Find correlation coefficient \(r\) :
\[
r=(73527-866 \times 639 / 10) / \sqrt{ }\left\{\left(121276-866^{2}\right\}\right.
\] \\
(A.E.F.; A0 if only 3 s.f. clearly used) \\
State both hypotheses (B0 for \(r \ldots\)): \\
State or use correct tabular two-tail \(r\)-value: \\
Valid method for reaching conclusion: \\
Correct conclusion (A.E.F, dep *A1, *B1): \\
Calculate gradient \(p\) in \(x-\bar{\chi}=p(y-\bar{\gamma})\) : \\
Find regression line of \(x\) on \(y\) :
\end{tabular} \& \begin{tabular}{l}
\[
\text { 0) } \begin{aligned}
\& \left.\left(55991-639^{2} / 10\right)\right\} \\
= \& 18189 \cdot 6 / \sqrt{ }(46280 \cdot 4 \times 15158 \cdot 9) \\
= \& 0.687
\end{aligned}
\]
\[
\mathrm{H}_{0}: \rho=0, \mathrm{H}_{1}: \rho \neq 0
\]
\[
r_{10,5 \%}=0.632
\] \\
Reject \(\mathrm{H}_{0}\) if \(|r|>\) tabular value There is non-zero correlation
\[
\begin{aligned}
\& p=18189 \cdot 6 / 15158 \cdot 9=1 \cdot 20 \\
\& x=86 \cdot 6+1 \cdot 20(y-63 \cdot 9) \\
\& =1.20 y+9.92
\end{aligned}
\]
\end{tabular} \& \[
\begin{array}{r}
\text { M1 A1 } \\
\text { A1 } \\
\text { *A1 } \\
\text { B1 } \\
\text { *B1 } \\
\text { M1 } \\
\text { A1 } \\
\text { B1 } \\
\\
\text { M1 A1 }
\end{array}
\] \& 4

4
4
3 \& 11

\hline
\end{tabular}

Page 8	Mark Scheme	Syllabus	Paper
	GCE A LEVEL - May/June 2014	$\mathbf{9 2 3 1}$	$\mathbf{2 1}$

Page 9 Mark Scheme	Syllabus	Paper	
	GCE A LEVEL - May/June 2014	9231	21

B	Estimate population variance:	$s_{P}{ }^{2}=\left(236 \cdot 0-42 \cdot 8^{2} / 8\right) / 7$			
	(allow biased here: 0.8775 or 0.9367^{2})	$=351 / 350$ or 1.003 or 1.001^{2}	M1		
	Find confidence interval (allow z in place of t) e.g.:	$42 \cdot 8 / 8 \pm t \leqslant\left(s_{P}^{2} / 8\right)$	M1		
	Use correct tabular t-value:	$t_{7,0.975}=2.365$	A1		
	Evaluate C.I. correct to 2 d.p.:	$5 \cdot 35 \pm 0.84$ or [4.51, 6.19]	A1	4	
	Formulate inequality for k (or equality for $k_{\max }$):	$(5.35-\mathrm{k}) / \sqrt{ }\left(s_{P}{ }^{2} / 8\right) \geqslant[$ or $>] t$	M1		
	Use correct tabular t-value:	$t_{7,0.9}=1.415$	A1		
	Solve for $k_{\text {max }} \quad(\mathrm{A} 0$ if $=$ or \leqslant was used for k above $)$:	$5.35-k \geqslant 0.50, k_{\text {max }}=4.85$	A1	3	
	State hypotheses (B0 for $\bar{x} \ldots$), e.g.:	$H_{0}: \mu_{P}=\mu_{Q}, H_{1}: \mu_{P}>\mu_{Q}$	B1		
	State assumption (A.E.F.):	Normal distns. for [P and] Q			
		and equal variances	B1		
	Estimate (pooled) common variance:	$s^{2}=(7 \times 1.003+11 \times 1.962) / 18$			
		$=1.589$ or 1.261^{2}	M1 A1		
	Calculate value of t (to 3 s.f.):	$t=(5 \cdot 35-4.60) /(\mathrm{s} \sqrt{ }(1 / 8+1 / 12))$			
		$=1.30$	M1 A1		
	Correct conclusion (A.E.F., \wedge^{\wedge} on t):	$\mathrm{t}<\mathrm{t}_{18},{ }_{0.9}=1.33$ so Q's mean is not less than P's	B1 ${ }^{\wedge}$	7	14

