Cambridge International
A Level

Cambridge International Examinations

Cambridge International Advanced Level

FURTHER MATHEMATICS

9231/21
Paper 2
May/June 2016
MARK SCHEME
Maximum Mark: 100

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - May/June 2016	$\mathbf{9 2 3 1}$	21

Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol \downarrow implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.

B2/1/0 means that the candidate can earn anything from 0 to 2 .
The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10 .

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - May/June 2016	9231	21

The following abbreviations may be used in a mark scheme or used on the scripts:
AEF Any Equivalent Form (of answer is equally acceptable)
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)

CWO Correct Working Only - often written by a "fortuitous" answer
ISW Ignore Subsequent Working
MR Misread
PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)

SOS See Other Solution (the candidate makes a better attempt at the same question)
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through \downarrow " marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR-2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - May/June 2016	9231	21

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - May/June 2016	9231	21

\begin{tabular}{|c|c|c|c|c|}
\hline Question \& \multicolumn{2}{|l|}{Mark Scheme Details} \& \begin{tabular}{l}
Part \\
Mark
\end{tabular} \& Total \\
\hline 4 \& \begin{tabular}{l}
Find \(v^{2}\) at \(A\) from conservation of energy: \\
Use \(F=m a\) radially at \(A\) with \(R=0\) : \\
Use \(v^{2}=3 a g / 5\) and eliminate \(\cos \theta\) to find \(u\) : \\
(allow numerical value of \(g\)) \\
Find or imply vertical component of speed at \(A\) : \\
Find greatest height \(h_{A}\) reached above \(A\) : \\
Find greatest height \(h_{O}\) reached above \(O\) :
\end{tabular} \& \[
\begin{aligned}
\& 1 / 2 m v^{2}=1 / 2 m u^{2}-m g a(1+\cos \theta) \\
\& m v^{2} / a=m g \cos \theta \\
\& \cos \theta=3 / 5 \\
\& u^{2}=v^{2}+2 a g(1+\cos \theta)=19 a g / 5 \\
\& u=\sqrt{ }(19 a g / 5) \text { or } 1 \cdot 95 \sqrt{ }(a g) \\
\& \text { or } \sqrt{ }(38 a) \text { or } 6 \cdot 16 \sqrt{ }(a) \\
\& V=v \sin \theta[=4 v / 5] \\
\& h_{A}=V^{2} / 2 g=24 a / 125 \text { or } 0.192 a \\
\& h_{O}=h_{A}+a \cos \theta \\
\& =99 a / 125 \text { or } 0.792 a
\end{aligned}
\] \& \begin{tabular}{l}
M1 A1 B1 \\
M1 A1 \\
M1 \\
M1 A1 \\
M1 A1
\end{tabular} \& [5]
[5] \\
\hline 5 \& \begin{tabular}{l}
Find MI of rod about \(l\) : \\
Find MI of disc \(C\) about \(l\) using both theorems: \\
Find MI of disc \(D\) about \(l\) using both theorems: \\
Sum to find MI of system about \(l\) : A.G. \\
Use eqn of circular motion to find \(\mathrm{d}^{2} \theta / \mathrm{d} t^{2}\) where \(\theta\) is angle of \(C D\) with vertical: \\
(A1 only for two correct terms on RHS; \\
A0 if \(\cos \theta\) used) \\
Approximate \(\sin \theta\) by \(\theta\) to show SHM: \\
(M0 if wrong sign or \(\cos \theta \approx \theta\) used) \\
Find period \(T\) (AEF): \\
(allow \(g=9.8\) or 9.81)
\end{tabular} \& \[
\begin{aligned}
\& I_{\text {rod }}=1 / 33 / 4 m(3 a / 2)^{2}+3 / 4 m(1 / 2 a)^{2} \\
\& {\left[==3 / 4 m a^{2}\right]} \\
\& I_{\text {disc }}=1 / 2 \times 1 / 2 m a^{2}+m(3 a)^{2} \\
\& {\left[=(37 / 4) m a^{2}\right]} \\
\& I_{\text {disc } D}=1 / 2 \times 1 / 2 m m(2 a)^{2}+4 m(3 a)^{2} \\
\& {\left[=40 m a^{2}\right]} \\
\& I=(3 / 4+37 / 4+40) m a^{2}=50 m a^{2} \\
\& {[-] I \mathrm{~d}^{2} \theta / \mathrm{d} t^{2}=4 m g \times 3 a \sin \theta} \\
\& -3 / 4 m g \times 1 / 2 a \sin \theta \\
\& -m g \times 3 a \sin \theta \\
\& {[=(69 / 8) m g a \sin \theta]} \\
\& \mathrm{d}^{2} \theta / \mathrm{d} t^{2}=-(69 g / 400 a) \theta \\
\& \text { or }-(0 \cdot 1725 g / a) \theta \\
\& T=2 \pi / \sqrt{ }(69 g / 400 a) \\
\& \quad=40 \pi \sqrt{ }(a / 69 g) \\
\& \text { or } 15 \cdot 1 \sqrt{ }(a / g) \text { or } 4 \cdot 78 \sqrt{ } a
\end{aligned}
\] \& \& [6]

[6]

\hline 6 \& | Find prob. p of score of 6 on one throw: |
| :--- |
| Find mean of X : |
| Formulate condition for $N\left(1-q^{N}\right.$ is M0): |
| Rearrange and take logs (any base) to give bound: |
| Find $N_{\text {min }}$: |
| ($N-1<20.03$ or $N-1=20.03$ earns M1 M1 A0) | \& \[

$$
\begin{aligned}
& p=5 / 36 \text { or } 0 \cdot 139 \\
& 1 / p=36 / 5 \text { or } 7 \cdot 2 \\
& 1-q^{N-1}>0.95 \\
& (31 / 36)^{N-1}<0.05 \\
& N-1>\log 0 \cdot 05 / \log 31 / 36 \\
& N-1>20 \cdot 03, N_{\min }=22
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { B1 } \\
& \text { B1 } \\
& \text { M1 } \\
& \text { M1 } \\
& \text { A1 }
\end{aligned}
$$
\] \& [2]

[3]

\hline 7 \& | Calculate sample mean: |
| :--- |
| Estimate population variance: |
| (allow biased here: 0.14 or 0.3742^{2}) |
| State hypotheses (AEF; B0 for $\bar{x} \ldots$): |
| Calculate value of t (to 3 s.f.): |
| State or use correct tabular t-value (to 3 s.f.) : |
| (or can compare \bar{x} with $2.5+0.246=2.746$) |
| State or imply valid method for conclusion e.g.: |
| Conclusion (AEF, requires both values correct): | \& | $\begin{aligned} & \bar{x}=24 \cdot 6 / 9 \text { or } 41 / 15 \text { or } 2 \cdot 73[3] \\ & s^{2}=\left(68 \cdot 5-24 \cdot 6^{2} / 9\right) / 8 \\ &=63 / 400 \text { or } 0 \cdot 1575 \text { or } 0.3969^{2} \\ & \mathrm{H}_{0}: \mu=2 \cdot 5, \mathrm{H}_{1}: \mu>2 \cdot 5 \\ & t=(\bar{x}-2 \cdot 5) /(s / \sqrt{ } 9)=1.76 \\ & t_{8,0.95}=1 \cdot 86[0] \end{aligned}$ |
| :--- |
| Accept H_{0} if $t<$ tabular value $1.76[\pm 0.02]<1.86$ so popln. mean not greater than 2.5 | \& \[

$$
\begin{gathered}
\text { B1 } \\
\text { M1 } \\
\text { B1 } \\
\text { M1 A1 } \\
\text { B1 } \\
\text { M1 } \\
\text { A1 }
\end{gathered}
$$
\] \& [8]

\hline
\end{tabular}

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - May/June 2016	9231	21

\begin{tabular}{|c|c|c|c|}
\hline Question \& Mark Scheme Details \& \begin{tabular}{l}
Part \\
Mark
\end{tabular} \& Total \\
\hline \begin{tabular}{l}
8 (i) \\
(ii) \\
(iii)
\end{tabular} \& \begin{tabular}{l}
Find or state distribution function \(\mathrm{F}(x)\) for \(x \geqslant 0\) : Use \(\mathrm{F}(0)=0\) to find \(\mathrm{F}(x)\) : \\
Find median value \(m\) from \(\mathrm{F}(m)=1 / 2\) :
\[
\begin{aligned}
\& \mathrm{F}(x)=\int \mathrm{f}(x) \mathrm{d} x=-\mathrm{e}^{-2 x}+c \\
\& \mathrm{~F}(x)=0(x<0), 1-\mathrm{e}^{-2 x}(x \geqslant 0) \\
\& 1-\mathrm{e}^{-2 m}=1 / 2, \mathrm{e}^{2 m}=2 \\
\& m=1 / 2 \ln 2 \text { or } 0.347
\end{aligned}
\] \\
Find or state \(\mathrm{G}(y)\) from \(Y=\mathrm{e}^{x}\) for \(x \geqslant 0\) : \\
(allow \(<\) or \(\leqslant\) throughout) \\
Find \(g(y)\) by differentiation: \\
State corresponding range of \(y\) :
\[
\begin{aligned}
\mathrm{G}(y) \& =\mathrm{P}(Y<y)=\mathrm{P}\left(\mathrm{e}^{x}<y\right) \\
\& =\mathrm{P}(x<\ln y)=\mathrm{F}(\ln y) \\
\& =1-\mathrm{e}^{-2 \ln y}\left[=1-1 / y^{2}\right] \\
\mathrm{g}(y) \& =2 / y^{3} \\
\text { for } y \& \geqslant 1[\mathrm{~g}(y)=0 \text { for } y<1]
\end{aligned}
\]
\end{tabular} \& \[
\begin{gathered}
\text { M1 } \\
\text { A1 } \\
\text { M1 } \\
\text { M1 A1 } \\
\\
\text { M1 A1 } \\
\text { A1 } \\
\text { A1 }
\end{gathered}
\] \& [2]
[3]

$[4]$

\hline 9 \& \& | M1 A2 |
| :--- |
| B1 |
| M1 A1 |
| B1^ |
| M1 |
| A1 | \& [10]

\hline 10 (i) \& | Find $\sum x$ and $\sum y$ (M1 for either): |
| :--- |
| SC: Allow M1 if 5 used instead of $6(\max 4 / 11)$, giving 62.97, 50.97 and $r=0.961[5]$ |
| Find correlation coefficient r, e.g.: |
| 111.51 $\begin{aligned} \left(\sum x\right)^{2} & =6(844.20-6 \times 36.66) \\ & =3775.44 \end{aligned}$ $\sum x=61.2 \text { or } \bar{x}=10.2$ $\left(\sum y\right)^{2}=6(481.5-6 \times 9.69)$ $=2540 \cdot 16$ $\sum y=50.4 \text { or } \bar{y}=8.4$ $S_{x y}=625.59-61.2 \times 50.4 / 6=$ |
| $S_{x x}=844 \cdot 20-61 \cdot 2^{2} / 6$ |
| or $6 \times 36.66=219.96$ |
| $S_{y y}=481 \cdot 50-50 \cdot 4^{2} / 6$ |
| or $6 \times 9.69=58.14$ |
| $r=S_{x y} / \sqrt{ }\left(S_{x x} S_{y y}\right)=0.986$ | \& | M1 A1 |
| :--- |
| A1 |
| M1 A1 | \& [5]

\hline
\end{tabular}

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - May/June 2016	9231	21

\begin{tabular}{|c|c|c|c|}
\hline Question \& Mark Scheme Details \& \begin{tabular}{l}
Part \\
Mark
\end{tabular} \& Total \\
\hline (ii)

(iii) \& \& \[
$$
\begin{gathered}
\text { B1 } \\
\text { M1 A1 } \\
\text { A1 } \\
\text { B1 } \\
\text { B1 }
\end{gathered}
$$

\] \& | [4] |
| :--- |
| [2] |

\hline 11A \& | Denoting angle between $A B$ and $C A$ produced by Φ and denoting mid-point of $B C$ by E, say. |
| :--- |
| Take moments for rod about A (AEF): |
| Substituting $\Phi=2 \theta$ and $A E=2 a \sin \theta$. |
| Hence find tension T in terms of θ : |
| Find T in terms of θ using Hooke's Law: |
| Equate to find $\cos \theta$: |
| Hence find T (allow assumption of $\cos \theta=3 / 4$): |
| Find horizontal force X at A (ignore sign): |
| Find vertical force Y at A (ignore sign): |
| Find magnitude of force at A : | \& \[

$$
\begin{gathered}
\text { M1 A1 } \\
\text { A1 } \\
\text { A1 } \\
\text { M1 A1 } \\
\text { A1 } \\
\text { M1 A1 } \\
\text { B1 } \\
\text { B1 } \\
\text { B1 } \\
\text { M1 A1 }
\end{gathered}
$$
\] \& [10]

$[4]$

\hline
\end{tabular}

Page 8	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - May/June 2016	9231	21

Question	Mark Schem		Part Mark	Total
11B	Find Σx via sample mean \bar{x} : 26.83) EITHER: Find estimated s.d. s_{A}, or $s_{A}{ }^{2}$: with $t=t_{11,0.975}=2.201$ (to 3 s.f.) Find Σx^{2} from s_{A} or $s_{A}{ }^{2}$: (M0 for $s_{A}{ }^{2}=\{\ldots\} / 12$) OR: \quad Find estimated s.d. σ_{A}, or $\sigma_{A}{ }^{2}$: with $t=t_{11,0.975}=2 \cdot 201$ (to 3 s.f.) Find Σx^{2} from σ_{A} or $\sigma_{A}{ }^{2}$: (M0 for $\sigma_{A}{ }^{2}=\{\ldots\} / 11$) State hypotheses (B0 for $\bar{x}_{A} \ldots$), e.g.: Estimate B 's popln. variance (to 3 d.p..): (allow biased here: 4.578) Find pooled estimate of common variance: (note $s_{B}{ }^{2}$ may be implied, earning M1 above) Calculate value of $t($ or $-t)$: (to 3 s.f.) State or use correct tabular t value: (to 3 s.f.) (or can compare $\bar{x}_{A}-\bar{x}_{B}=0.7143$ with 1.536) Consistent conclusion (AEF, $\sqrt{ }$ on t, dep *B1):	$\begin{aligned} & \Sigma x=12 \bar{x}=12 \times 1 / 2(25 \cdot 17+ \\ &=12 \times 26=312 \\ & t s_{A} / \sqrt{ } 12=1 / 2(26.83-25 \cdot 17) \\ & s_{A}=0.83 \sqrt{ } 12 / 2 \cdot 201 \\ &=1.306 \text { or } s_{A}^{2}=1.706 \\ & s_{A}{ }^{2}=\left\{\Sigma x^{2}-\left(\sum x\right)^{2} / 12\right\} / 11 \\ & \Sigma x^{2}=11 s_{A}^{2}+(\Sigma x)^{2} / 12 \\ &=8130[\cdot 8] \\ & t \sigma_{A} / \sqrt{ } 11=1 / 2(26.83-25.17) \\ & \sigma_{A}=0.83 \sqrt{ } 11 / 2.201 \\ &=1.25 \text { or } \sigma_{A}^{2}=1.564 \\ & \sigma_{A}{ }^{2}=\left\{\sum x^{2}-(\Sigma x)^{2} / 12\right\} / 12 \\ & \Sigma x^{2}=12 \sigma_{A}{ }^{2}+(\Sigma x)^{2} / 12 \\ &=8130[8] \end{aligned}$ $\mathrm{H}_{0}: \mu_{A}=\mu_{B}, \mathrm{H}_{1}: \mu_{A}>\mu_{B}$ $s_{B}{ }^{2}=\left(4507.62-177^{2} / 7\right) / 6$ $[=5.341]$ $s^{2}=\left(11 s_{A}^{2}+6 s_{B}^{2}\right) / 17$ $=(18.77+32.05) / 17$ $=2.989 \text { or } 1.729^{2} \text { (to } 3 \text { s.f.) }$ $t=(26-177 / 7) / s \sqrt{ }(1 / 12+1 / 7)$ $=(26-25 \cdot 29) / s \sqrt{ }(1 / 12+1 / 7)$ $=0.7143 / 0.8222=0.869$ $t_{17,0.9}=1.333$ $t<$ tabular value so Petra's belief not supported or wing span of A not greater	$\begin{gathered} \text { M1 A1 } \\ \text { M1 } \\ \text { A1 } \\ \text { M1 A1 } \\ \text { (M1 } \\ \text { A1 } \\ \text { M1 A1) } \\ \text { B1 } \\ \text { M1 } \\ \text { M1 A1 } \\ \text { M1 A1 } \\ \text { *B1 } \\ \text { B1 } \end{gathered}$	[6]

