MARK SCHEME for the October/November 2012 series

9231 FURTHER MATHEMATICS

9231/22
Paper 2, maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2012	9231	22

Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol \downarrow implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.

B2/1/0 means that the candidate can earn anything from 0 to 2.
The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10 .

Page 3	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2012	9231	22

The following abbreviations may be used in a mark scheme or used on the scripts:
AEF Any Equivalent Form (of answer is equally acceptable)
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)

BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)

CWO Correct Working Only - often written by a 'fortuitous' answer
ISW Ignore Subsequent Working
MR Misread
PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)

SOS See Other Solution (the candidate makes a better attempt at the same question)
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through ${ }^{\prime \prime}$ marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR-2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2012	9231	22

\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
Question \\
Number
\end{tabular} \& Mark Scheme Details \& \& \begin{tabular}{l}
Part \\
Mark
\end{tabular} \& Total \\
\hline 1 \& \begin{tabular}{l}
Find MI of disc \(A\) about \(O\) : \\
Find MI of disc \(B\) about \(O\) : \\
Find MI of \(\operatorname{rod} A B\) about \(O\) : \\
Find MI of body about \(O\) :
\end{tabular} \& \[
\begin{array}{lr}
I_{\mathrm{A}}=1 / 2 m a^{2}+m(4 a)^{2}\left[=(33 / 2) m a^{2}\right] \& \text { B1 } \\
I_{\mathrm{B}}=1 / 2 m a^{2}+m(6 a)^{2}\left[=(73 / 2) m a^{2}\right] \& \text { B1 } \\
I_{\text {rod }}=1 / 33 m(5 a)^{2}+3 m a^{2}\left[=28 m a^{2}\right] \& \text { B1 } \\
I_{\text {body }}=I_{A}+I_{B}+I_{\text {rod }}=81 m a^{2} \text { A.G. } \& \text { M1 A1 }
\end{array}
\] \& 5 \& [5] \\
\hline \(2 \begin{array}{ll}2 \& \text { (i) } \\ \\ \& \\ \& \text { (ii) }\end{array}\) \& \begin{tabular}{l}
Find eqn of motion for disc: \\
Find eqn of motion for particle: \\
Eliminate \(T\) to find angular accel.: \\
S.R.: M1 only for \(1.5 g \times 0.4=0.2 \mathrm{~d}^{2} \theta / \mathrm{d} t^{2}\) \(\left[\mathrm{d}^{2} \theta / \mathrm{d} t^{2}=30,(\mathrm{~d} \theta / \mathrm{d} t)^{2}=10 \pi, v=2 \cdot 24\right]\) \\
EITHER \\
Integrate to find \((\mathrm{d} \theta / \mathrm{d} t)^{2}\) : \\
Apply initial conds. and \(\theta=\pi / 6\) : \\
OR \\
Use energy to find \((\mathrm{d} \theta / \mathrm{d} t)^{2}\) : \\
Simplify: \\
Find speed of particle:
\end{tabular} \& \[
\begin{aligned}
T \times 0.4 \& =0.2 \mathrm{~d}^{2} \theta / \mathrm{d} t^{2} \\
1.5 g-T \& =1.5 \times 0.4 \mathrm{~d}^{2} \theta / \mathrm{d} t^{2} \\
1.5 g \& =(0.6+0.5) \mathrm{d}^{2} \theta / \mathrm{d} t^{2} \\
\mathrm{~d}^{2} \theta / \mathrm{d} t^{2} \& =15 g / 11 \text { or } 13.6\left[\mathrm{rad} \mathrm{~s}^{-2}\right]
\end{aligned}
\]
\[
1 / 2(\mathrm{~d} \theta / \mathrm{d} t)^{2}=(15 g / 11) \theta[+c]
\]
\[
(\mathrm{d} \theta / \mathrm{d} t)^{2}=5 \pi g / 11 \text { or } 14 \cdot 3
\]
\[
\begin{align*}
\& 1 / 20.2(\mathrm{~d} \theta / \mathrm{d} t)^{2}+1 / 21.5(0.4 \mathrm{~d} \theta / \mathrm{d} t)^{2} \\
\& =1.5 \mathrm{~g} \times 0.4 \times \pi / 6 \tag{M1}\\
\& (\mathrm{~d} \theta / \mathrm{d} t)^{2}=5 \pi g / 11 \text { or } 14.3 \tag{A1}\\
\& v=0.4 \mathrm{~d} \theta / \mathrm{d} t=51\left[\mathrm{~m} \mathrm{~s}^{-1}\right]
\end{align*}
\] \& \begin{tabular}{|c}
4 \\
\\
\\
\\
3
\end{tabular} \& [7] \\
\hline 3 \& \begin{tabular}{l}
Use energy to find speed \(v\) when \(A P\) vertical: Use energy to find speed \(w\) when \(A P\) at angle \(\theta\) : \\
(note that \(v\) need not be found) \\
Use \(F=m a\) radially to find tension \(T\) : \\
Substitute for \(w^{2}\) : \\
Find \(x / a\) if \(T=0\) when \(\theta=\pi\) :
\end{tabular} \& \[
\begin{array}{lr}
\begin{array}{lr}
1 / 2 m v^{2}=m g a\left[v^{2}=2 g a\right] \& \text { B1 } \\
1 / 2 m w^{2}=1 / 2 m v^{2} \& \\
\& -m g(a-x)(1-\cos \theta)
\end{array} \& \text { M1 A1 } \\
{\left[m w^{2}=2 m g\{x+(a-x) \cos \theta\}\right]} \& \\
T-m g \cos \theta=m w^{2} /(a-x) \& \text { M1 A1 } \\
T=m g\{3 \cos \theta+2 x /(a-x)\} \& \text { A.G. M1 A1 } \\
2 x=3(a-x), \quad x / a=3 / 5 \& \text { M1 A1 }
\end{array}
\] \& \[
\begin{aligned}
\& 7 \\
\& 2
\end{aligned}
\] \& [9] \\
\hline \begin{tabular}{l}
4 \\
(i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
Resolve speeds parallel to barrier: \\
Resolve speeds perpendicular to barrier: \\
Find \(v^{2}\) \\
Relate loss of K.E. to that before collision: \\
Find (reversed) speed of \(P\) using impulse: \\
Find (reversed) speed of \(Q\) using impulse: OR by conservation of momentum: \\
Find coefficient of restitution:
\end{tabular} \& \[
\begin{array}{lr}
v \cos \theta=u \cos 60^{\circ}[=u / 2] \& \text { B1 } \\
\left.v \sin \theta=1 / 3 u \sin 60^{\circ}=u / 2 \sqrt{3}\right] \& \text { M1 } \\
v^{2}=u^{2}(1 / 12+1 / 4)=1 / 3 u^{2} \& \text { A1 } \\
1 / 22 m\left(u^{2}-v^{2}\right)=2 / 3 \times 1 / 22 m u^{2} \& \text { A.G. M1 B1 } \\
2 m w_{P}=2 / 3 m u(1+\sqrt{ } 3)-2 m v \& \\
w_{P}=1 / 3 u \& \text { A.G. M1 A1 } \\
m w_{Q}=2 / 3 m u(1+\sqrt{ } 3)-m u \& \\
2 m u / 3-m w_{Q}=-2 m u / \sqrt{ } 3+m u \& \\
w_{Q}=(2 / \sqrt{3}-1 / 3) u \quad(\text { A.E.F. } \& \text { M1 A1 } \\
\left(w_{P}+w_{Q}\right) /(v+u) \& \\
=2 /(1+\sqrt{3}) \text { or } \sqrt{3}-1 \& \text { M1 A1 }
\end{array}
\] \& 2

4 \& [11]

\hline
\end{tabular}

Page 5 Mark Scheme	Syllabus	Paper	
	GCE AS/A LEVEL - October/November 2012	9231	22

Page 6	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL - October/November 2012	9231	22

8 (i) (ii) (iii)		3	[11]
9	Estimate population variance using A 's sample: (allow use of biased here: 1.489 or 1.22^{2}) Find confidence interval: State or use correct tabular value of t : Evaluate C.I. correct to 3 s.f.: State suitable assumptions (A.E.F.): State hypotheses: Estimate population variance using B 's sample: (allow use of biased here: 0.988 or 0.994^{2}) Calculate value of t (to $2 \mathrm{~d} . \mathrm{p}$.): State or use correct tabular value $t_{10,0.95}=1.812[\text { or } 1.81]$ Correct conclusion (AEF, dep *A1, *B1): S.R.: Deduct only A1 if intermediate result to 3 s.f. μ_{A} is not greater than μ_{B} $\text { S.R.: Invalid method for calculating } t(\max 6 / 9): \quad \begin{aligned} t & =0 \cdot 8 / \sqrt{ }\left(s_{A}{ }^{2} / 7+s_{B}{ }^{2} / 5\right) \\ & =0 \cdot 8 / 0 \cdot 704=1 \cdot 14 \end{aligned}$	9	[14]

Page 7 Mark Scheme	Syllabus	Paper	
	GCE AS/A LEVEL - October/November 2012	9231	22

10 (a) For A, let contact pts with plane, sphere C be P, S
Stating or implying reactions R_{P}, R_{S} same as for B :
B1
Stating or implying $F_{P}=F_{S}$ by moments about O_{A} :
B1
Stating or implying 3 indep. eqns for F, R_{P}, R_{S} e.g.:
$3 \times$ M1 A1

Up to 2 resolutions of forces, e.g. \uparrow for system: $\quad 2 R_{P}=3 W$
\uparrow for A :
$R_{P}=W+R_{S} \cos \theta+F_{S} \sin \theta$
$2 R_{S} \cos \theta+2 F_{S} \sin \theta=W$
$R_{P} \cos \theta+F_{P} \sin \theta=R_{S}+W \cos \theta$
$F_{P}(r+r \cos \theta)+W r \sin \theta$
$=R_{P} r \sin \theta$

Find R_{P} :
$R_{P}=3 W / 2$
A1
$R_{S}=W / 2$
A1
$F=(W \sin \theta) / 2(1+\cos \theta)$
A1
Find F at P and/or S :
Use $F \leq \mu R_{P}$ to find bound for μ :
$\mu \geq \sin \theta / 3(1+\cos \theta)$
$\mu^{\prime} \geq \sin \theta /(1+\cos \theta)$
A.G. M1 A1

Use $F \leq \mu^{\prime} R_{S}$ to find bound for μ^{\prime} :
A.G. M1

14
(b)

Find $\mathrm{E}(X)$ using $\int x \mathrm{f}(x) \mathrm{d} x$:
$\mathrm{E}(X)=\int_{\mathbf{2}}^{\mathbf{3}}\left(5 x^{2}-x^{3}-4 x\right) / 10 \mathrm{~d} x \quad$ M1 A1
$=1 / 2\left(4^{3}-2^{3}\right)-3\left(4^{4}-2^{4}\right) / 40-3\left(4^{2}-2^{2}\right) / 5 \quad$ *A1
$=28-18-7 \cdot 2=2 \cdot 8 \quad$

Verify $\mathrm{E}(X)$ within 10% of 2.69 (A1 dep *A1):

Show derivation of tabular entry:
$(\mathrm{E}(X)-2.69) / 2.69=0.041<0.1$
or $1.1 \times 2.69=2.96>\mathrm{E}(X)$
M1 A1
$60 \int_{3.2}^{3.6}\left(5 x-x^{2}-4\right) / 10 d x$
$=60\left[3\left(5 x^{2} / 2-x^{3} / 3-4 x\right) / 10\right]_{1} 3.2^{\top} \mathbf{3 . 6}$
or $\left[45 x^{2}-6 x^{3}-72 x\right]_{1} 3.2 \frac{1}{13.6}$
$=122.4-83.328-28.8$
or 60×0.1712
$=10.272$
A.G A1

2
$\mathrm{H}_{0}: \mathrm{f}(x)$ fits data (A.E.F.)
B1
State (at least) null hypothesis:
O: . . . 8
E: . . . 14.208
B1

Calculate χ^{2} (to 2 d.p.):
$\chi^{2}=0.8126+0.0584+0.2011$
$+2.7135=3.78[47] \mathrm{M} 1 * \mathrm{~A} 1$
State or use consistent tabular value (to 2 d.p.): [or if no cells combined:
Valid method for reaching conclusion:
Conclusion (A.E.F., dep *A1, *B1):
$\chi \quad+2.7135=3.78[47]$
$\chi_{30.9}{ }^{2}=6 \cdot 25[1]$
$\left.\chi_{4,0.9}{ }^{2}=7.78\right]$
*B1
Accept H_{0} if $\chi^{2}<$ tabular value M1
$3.78<6.25$ so $\mathrm{f}(x)$ does fit
Combine last 2 cells since exp. value <5 :

