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1 Show that
2n

∑
r=n+1

r2 = 1
6
n(2n + 1)(7n + 1). [4]

2 Find the set of values of a for which the system of equations

ax + y + 2ß = 0,

3x − 2y = 4,

3x − 4y − 6aß = 14,

has a unique solution. [4]

3 Let S
N

= 1

2!
+ 2

3!
+ 3

4!
+ . . . + N

(N + 1)! . Prove by mathematical induction that, for all positive

integers N,

S
N
= 1 − 1

(N + 1)! . [5]

4 The points A, B and C have position vectors i + 2j + 2k, 2i + 4j + 5k and 2i + 3j + 4k respectively.

Find
−−→
AB × −−→

AC. [3]

Deduce, in either order, the exact value of

(i) the area of the triangle ABC,

(ii) the perpendicular distance from C to AB.

[3]

5 The curve C has polar equation r = 1 + 2 cos θ. Sketch the curve for −2
3
π ≤ θ < 2

3
π. [2]

Find the area bounded by C and the half-lines θ = −1
3
π, θ = 1

3
π. [4]

6 The curve C has parametric equations

x = t2, y = 1
4
t4 − ln t,

for 1 ≤ t ≤ 2. Find the area of the surface generated when C is rotated through 2π radians about the

y-axis. [7]

7 A cubic equation has roots α, β and γ such that

α + β + γ = 4,

α2 + β2 + γ 2 = 14,

α3 + β3 + γ 3 = 34.

Find the value of αβ + βγ + γ α. [2]

Show that the cubic equation is

x3 − 4x2 + x + 6 = 0,

and solve this equation. [6]
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8 Let ß = cos θ + i sin θ. Show that

1 + ß = 2 cos 1
2
θ(cos 1

2
θ + i sin 1

2
θ). [3]

By considering (1 + ß)n, where n is a positive integer, deduce the sum of the series

(n

1
) sin θ + (n

2
) sin 2θ + . . . + (n

n
) sin nθ. [6]

9 The curve C has equation y = x2 − 3x + 3

x − 2
. Find the equations of the asymptotes of C. [3]

Show that there are no points on C for which −1 < y < 3. [4]

Find the coordinates of the turning points of C. [3]

Sketch C. [2]

10 The curve C has equation x3 + y3 = 3xy, for x > 0 and y > 0. Find a relationship between x and y when
dy

dx
= 0. [4]

Find the exact coordinates of the turning point of C, and determine the nature of this turning point.

[8]

11 Show that ã x(1 − x2)1
2 dx = −1

3
(1 − x2)3

2 + c, where c is a constant. [1]

Given that I
n
= ã 1

0

xn(1 − x2)1
2 dx, prove that, for n ≥ 2,

(n + 2)I
n
= (n − 1)I

n−2
. [5]

Use the substitution x = sin u to show that

ã 1

0

(1 − x2)1
2 dx = 1

4
π. [5]

Find I
4
. [2]
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12 Answer only one of the following two alternatives.

EITHER

The vector e is an eigenvector of each of the n × n matrices A and B, with corresponding eigenvalues

λ and µ respectively. Prove that e is an eigenvector of the matrix AB with eigenvalue λµ. [2]

It is given that the matrix A, where

A =  3 2 2

−2 −2 −2

1 2 2

,

has eigenvectors ( 0

1

−1

) and ( 1

0

−1

). Find the corresponding eigenvalues. [2]

Given that 2 is also an eigenvalue of A, find a corresponding eigenvector. [2]

The matrix B, where

B = −1 2 2

2 2 2

−3 −6 −6

,

has the same eigenvectors as A. Given that AB = C, find a non-singular matrix P and a diagonal

matrix D such that

P−1C2P = D. [8]

OR

Obtain the general solution of the differential equation

d2x

dt2
+ 6

dx

dt
+ 13x = 75 cos 2t. [7]

Given that x = 5 and
dx

dt
= 0 when t = 0, find x in terms of t. [4]

Show that, for large positive values of t and for any initial conditions,

x ≈ 5 cos(2t − φ),
where the constant φ is such that tan φ = 4

3
. [3]
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