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1 The curve C is defined parametrically by

x = 2 cos3 t and y = 2 sin3 t, for 0 < t < 1
2
0.

Show that, at the point with parameter t,

d2y

dx2
= 1

6
sec4 t cosec t. �4�

2 Find the general solution of the differential equation

d2x

dt2
+ 4

dx

dt
+ 4x = 7 − 2t2. �6�

3 Given that a is a constant, prove by mathematical induction that, for every positive integer n,

dn

dxn �xeax� = nan−1eax + anxeax. �6�

4 The sequence a
1
, a

2
, a

3
, … is such that, for all positive integers n,

an = n + 5
��n2 − n + 1�

− n + 6
��n2 + n + 1�

.

The sum
NÐ

n=1

an is denoted by SN . Find

(i) the value of S
30

correct to 3 decimal places, [3]

(ii) the least value of N for which SN > 4.9. [4]

5 The cubic equation x3 + px2 + qx + r = 0, where p, q and r are integers, has roots !, " and ', such that

! + " + ' = 15,

!2 + "2 + '2 = 83.

Write down the value of p and find the value of q. [3]

Given that !, " and ' are all real and that !" + !' = 36, find ! and hence find the value of r. [5]

6 The matrix A, where

A =
` 1 0 0

10 −7 10

7 −5 8

a
,

has eigenvalues 1 and 3. Find corresponding eigenvectors. [3]

It is given that

`
0

2

1

a
is an eigenvector of A. Find the corresponding eigenvalue. [2]

Find a diagonal matrix D and matrices P and P−1 such that P−1AP = D. [5]
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7 The linear transformation T : >4 → >4 is represented by the matrix M, where

M =
�

1 −2 −3 1

3 −5 −7 7

5 −9 −13 9

7 −13 −19 11

�

.

Find the rank of M and a basis for the null space of T. [6]

The vector

�
1

2

3

4

�

is denoted by e. Show that there is a solution of the equation Mx = Me of the form

x =
�

a

b

−1

−1

�

, where the constants a and b are to be found. [4]

8 The curve C has equation y = 2x2 + kx

x + 1
, where k is a constant. Find the set of values of k for which

C has no stationary points. [5]

For the case k = 4, find the equations of the asymptotes of C and sketch C, indicating the coordinates

of the points where C intersects the coordinate axes. [6]

9 It is given that In = Ó e

1

�ln x�n dx for n ≥ 0. Show that

In = �n − 1��In−2
− In−1

� for n ≥ 2. �6�

Hence find, in an exact form, the mean value of �ln x�3 with respect to x over the interval 1 ≤ x ≤ e.

[6]

10 Using de Moivre’s theorem, show that

tan 51 = 5 tan 1 − 10 tan31 + tan51
1 − 10 tan21 + 5 tan41 . �5�

Hence show that the equation x2 − 10x + 5 = 0 has roots tan2
�

1
5
0� and tan2

�
2
5
0�. [4]

Deduce a quadratic equation, with integer coefficients, having roots sec2
�

1
5
0� and sec2

�
2
5
0�. [3]

[Question 11 is printed on the next page.]
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11 Answer only one of the following two alternatives.

EITHER

The points A, B and C have position vectors i, 2j and 4k respectively, relative to an origin O. The

point N is the foot of the perpendicular from O to the plane ABC. The point P on the line-segment

ON is such that OP = 3
4
ON. The line AP meets the plane OBC at Q. Find a vector perpendicular to

the plane ABC and show that the length of ON is
4��21� . [4]

Find the position vector of the point Q. [5]

Show that the acute angle between the planes ABC and ABQ is cos−1
�

2
3

�
. [5]

OR

The curve C has polar equation r = a�1 − cos1� for 0 ≤ 1 < 20. Sketch C. [2]

Find the area of the region enclosed by the arc of C for which 1
2
0 ≤ 1 ≤ 3

2
0, the half-line 1 = 1

2
0 and

the half-line 1 = 3
2
0. [5]

Show that
@

ds

d1
A2

= 4a2 sin2
�

1
2
1�,

where s denotes arc length, and find the length of the arc of C for which 1
2
0 ≤ 1 ≤ 3

2
0. [7]
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