Cambridge International Examinations

Cambridge International Advanced Level

FURTHER MATHEMATICS

Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol \checkmark implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0 .

B2/1/0 means that the candidate can earn anything from 0 to 2.
The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10 .

The following abbreviations may be used in a mark scheme or used on the scripts:
AEF Any Equivalent Form (of answer is equally acceptable)
AG \quad Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO Correct Working Only - often written by a 'fortuitous' answer

ISW \quad\begin{tabular}{l}
Ignore Subsequent Working

MR

PA

SOSSee Other Solution (the candidate makes a better attempt at the same question)

SR

\quad

Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be

varied in the light of a particular circumstance)
\end{tabular}

Penalties

[^0]| Question | Answer | | Marks | Partial Marks | Guidance |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Find 3 independent equations for T, R_{A}, R_{B} : Resolve horizontally: $\quad R_{B}=T \cos \alpha$ | 2 | | M1 A1 | |
| | Resolve vertically: $\quad R_{A}=W+T \sin \alpha$ | 2 | | M1 A1 | |
| | Take moments about A : $\begin{aligned} & R_{B} 3 a \sin \theta=W(3 a / 2) \cos \theta \\ & +T a(\sin \alpha \cos \theta+\cos \alpha \sin \theta) \\ & \text { or }+T a \sin (\alpha+\theta) \\ & \text { or }+T 3 a \cos \theta \sin \alpha \end{aligned}$ | 2 | | M1 A1 | (a may be omitted from moment eqns) |
| | Or: \quad Take moments about B : $\begin{aligned} & R_{A} 3 a \cos \theta=W(3 a / 2) \cos \theta \\ & +T 2 a(\sin \alpha \cos \theta+\cos \alpha \sin \theta) \\ \text { or } & +T 2 a \sin (\alpha+\theta) \\ \text { or } & +T 3 a \sin \theta \cos \alpha \end{aligned}$ | 2 | | (M1 A1) | |
| | Or: \quad Take moments about C : $\begin{aligned} & R_{A} a \cos \theta+W(a / 2) \cos \theta \\ & =R_{B} 2 a \sin \theta \end{aligned}$ | 2 | | (M1 A1) | |
| | Or: \quad Take moments about D : $\begin{aligned} & R_{A} 3 a \cos \theta-W(3 a / 2) \cos \theta \\ & =R_{B} 3 a \sin \theta \end{aligned}$ | 2 | | (M1 A1) | |
| | Solve for T, R_{A}, R_{B} (AEF in W and α): $\begin{aligned} & T=W / 2 \sin \alpha \text { or } 1 / 2 W \operatorname{cosec} \alpha \\ & R_{A}=3 W / 2 \\ & R_{B}=W / 2 \tan \alpha \text { or } 1 / 2 W \cot \alpha \end{aligned}$ | 3 | | $\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$ | |
| | | | 9 | | |

Page 4 of 16
© Cambridge International Examinations 2016

Question	Answer	Marks	Partial Marks	Guidance
2	For $A \& B$ use conservation of momentum, e.g.: $2 m v_{A}+m v_{B}=2 m u$	1	M1	$\left(\right.$ allow $\left.2 v_{A}+v_{B}=2 u\right)$
	Use Newton's law of restitution (consistent signs): $v_{B}-v_{A}=e u$	1	M1	
	Combine to find v_{A} and v_{B} : $v_{A}=(2-e) u / 3, v_{B}=2(1+e) u / 3$	2	A1 A1	
		4		
	$\begin{aligned} & \text { Find } e \text { from } v_{A}=\left\|v_{B}^{\prime}\right\| \text { with } v_{B}^{\prime}=[-] 0.4 v_{B}: \\ & \quad(2-e)=0.8(1+e), \quad e=2 / 3 \end{aligned}$	2	M1 A1	
	EITHER: Equate times in terms of reqd. distance x : $\begin{aligned} & (d-x) / v_{A}=d / v_{B}+x / v_{B}^{\prime}(\mathrm{AEF}) \\ & {\left[\quad v_{A}=v_{B}^{\prime}=4 u / 9, v_{B}=10 u / 9\right]} \end{aligned}$	2	M1 A1	speeds need not be found:
	Use $v_{A}=v_{B}{ }^{\prime}=0.4 v_{B}$ to solve for x : $d-x=0.4 d+x, x=0.3 d$	2	M1 A1	
	OR: \quad Find dist. moved by A when B reaches wall: $d_{A}=\left(d / v_{B}\right) v_{A}=0.4 d$	(2)	(M1 A1)	
	Find reqd. distance x : $x=1 / 2\left(d-d_{A}\right)=0.3 d$	(2)	(M1 A1)	
		4		

Question	Answer	Marks	Partial Marks	Guidance
3	Find k by equating equilibrium tensions: $m g(a / 2) / a=2 m g(3 a / 2-k a) / k a$	2	M1 A1	(vertical motion can earn M1 only)
	$1 / 2=3 / k-2, \quad k=6 / 5$ or $1 \cdot 2$	1	A1	
		3		
	$\begin{aligned} & \text { Apply Newton's law at general point, e.g.: } \\ & \quad m \mathrm{~d}^{2} x / \mathrm{d} \mathrm{t}^{2}=-m g(a / 2+x) / a \\ & +2 m g(3 / 2-k a-x) / k a \\ & o r \quad m \mathrm{~d}^{2} y / \mathrm{d} \mathrm{~d}^{2}=+m g(a / 2-y) / a \\ & \\ & -2 m g(3 a / 2-k a+y) / k a \end{aligned}$	3	M1 A2	(lose A1 for each incorrect term)
	$\begin{aligned} & \text { Simplify to give standard SHM eqn, e.g.: } \\ & \begin{array}{l} \mathrm{d}^{2} x / \mathrm{d} t^{2}=-(1+2 / k) g x / a \\ =-8 g x / 3 a \end{array} \end{aligned}$	1	A1	S.R.: B1 if no derivation (max 2/5)
	$\begin{aligned} & \text { State or find period using } 2 \pi / \omega \text { with } \omega=\sqrt{ }(8 g / 3 a) \text { : } \\ & \quad T=2 \pi \sqrt{ }(3 a / 8 g) \text { or } \pi \sqrt{ }(3 a / 2 g) \\ & \text { or } 3.85 \sqrt{ }(a / g) \text { or } 1.22 \sqrt{ } a[\mathrm{~s}] \end{aligned}$	1	B1 \downarrow	$(\sqrt{\text { on }} \omega)$
		5		
	Substitute values in $v^{2}=\omega^{2}\left(x_{0}{ }^{2}-x^{2}\right)$: $0.7^{2}=(8 g / 3 a)\left\{(0.2 a)^{2}-(0.05 a)^{2}\right\}$	2	M1 A1	
	Solve to find numerical value of a : $0.49=(8 \mathrm{~g} / 3) \times 0.0375 a, \quad a=0.49$	1	A1	
		3		

Question	Answer		Marks	Partial Marks	Guidance
4	EITHER: Find tension at top from $F=m a$ vertically: $T=m u^{2} / a-m g$	1		B1	
	OR: Use energy at e.g. θ to upward vertical: $1 / 2 m v^{2}=1 / 2 m u^{2}+m g a(1-\cos \theta)$ Find tension T by using $F=m a$ radially: $T=m v^{2} / a-m g \cos \theta$ Eliminate v^{2} : $=m u^{2} / a+m g(2-3 \cos \theta)$ Find T at top by taking $\theta=0$: $T=m u^{2} / a-m g$			(B1)	
	Find $u_{\min }$ by requiring $T \geqslant 0$ at top [or $T>0$]: $u^{2} / a-g \geqslant 0 \text { so } u_{\min }=\sqrt{ } a g$	1		B1	A.G.
			2		
	Find v at bottom from conservation of energy: $\begin{aligned} & 1 / 2 m v^{2}=1 / 2 m u^{2}+m g \times 2 a \\ & v^{2}=a g+4 a g, v=\sqrt{ }(5 a g) \end{aligned}$	2		$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	
	Find new speed V from conservation of momentum: $\begin{aligned} & m^{\prime} V=m v \text { with } m^{\prime}=m+1 / 4 m \\ & V=4 v / 5=4 \sqrt{ }(a g / 5) \\ & \text { or } \quad(4 / 5) \sqrt{ }(5 a g) \text { AEF } \end{aligned}$	2		$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	
			4		

Question	Answer		Marks	Partial Marks	Guidance
	Find w^{2} at angle θ from conservation of energy: $\begin{aligned} & 1 / 2 m^{\prime} w^{2}=1 / 2 m^{\prime} V^{2} \\ & -m^{\prime} g a(1+\cos \theta) \\ & {\left[w^{2}=a g(6 / 5-2 \cos \theta)\right]} \end{aligned}$	2		M1 A1	(condone m instead of m^{\prime} here since cancels out)
	S.R. Invalid energy method (max $2 / 5$): [gives $T^{\prime}=(5 m g / 4)(2-3 \cos \theta)$] $1 / 2 m^{\prime} w^{2}=1 / 2 m u^{2}$ $+m g a(1-\cos \theta)$ $-1 / 4 m g a(1+\cos \theta)$	1		(B1)	
	Find tension T^{\prime} there by using $F=m a$ radially: $T^{\prime}=m^{\prime} w^{2} / a-m^{\prime} g \cos \theta$	1		B1	
	$\begin{aligned} & \text { Eliminate } w^{2} \text { : } \\ & \quad=m^{\prime} V^{2} / a-m^{\prime} g(2+3 \cos \theta) \end{aligned}$	1		A1	
	$\begin{aligned} & \text { Substitute for } m^{\prime} \text { and } V \text { : } \\ & \quad=(5 m g / 4)(6 / 5-3 \cos \theta) \\ & \quad \text { or } \quad 3 m g / 2-(15 / 4) m g \cos \theta \end{aligned}$	1		A1	AEF
			5		
	Find $\cos \theta$ when string becomes slack from $T^{\prime}=0$: $\cos \theta=1 / 3 \times 6 / 5=2 / 5$ or 0.4		2	M1 A1	S.R. Allow if found from $T^{\prime}=m g(6 / 5-3 \cos \theta)$

Question	Answer	Marks	Partial Marks	Guidance
6(iv)	Formulate condition for N : $1-q^{N}>0.999, \quad\left[(1 / 3)^{N}<0.001\right]$	1	M1	
	Take logs (any base) to give bound for N : $N>\log 0.001 / \log 1 / 3$	1	M1	
	Find $N_{\text {min }}: \quad N>6 \cdot 29, N_{\text {min }}=7$	1	A1	$(N<6.29$ or $N=6.29$ earns M2 A0)
		3		
7(i)	Find $\mathrm{F}(x)$ for $1 \leqslant x \leqslant 4$: $\mathrm{F}(x)=\left(x^{3}-1\right) / 63$	1	B1	
	Find $\mathrm{G}(y)$ from $Y=X^{2}$ for $1 \leqslant x \leqslant 4$: $\begin{aligned} & \mathrm{G}(y)=\mathrm{P}(Y<y)=\mathrm{P}\left(X^{2}<y\right) \\ & =\mathrm{P}\left(X<y^{1 / 2}\right)=\mathrm{F}\left(y^{1 / 2}\right) \\ & =\left(y^{3 / 2}-1\right) / 63 \end{aligned}$	2	M1 A1	(result may be stated)
	Find $\mathrm{g}(y)$ for corresponding range of y : $\mathrm{g}(y)=y^{1 / 2} / 42$	1	A1	A.G.
	Find or state corresponding range of y : $1 \leqslant y \leqslant 16$	1	B1	A.G.
		5		
7(ii)	Find median value m of Y : $\begin{aligned} & \left(m^{3 / 2}-1\right) / 63=1 / 2 \\ & m=32 \cdot 5^{2 / 3}=10 \cdot 2 \end{aligned}$	2	M1 A1	
7(iii)	$\begin{aligned} & \text { Find } \left.\mathrm{E}(Y) \text { [or equivalently } \mathrm{E}\left(X^{2}\right)\right] \text { : } \\ & \quad \mathrm{E}(Y)=\int y \mathrm{~g}(y) \mathrm{d} y=\int y^{3 / 2} \mathrm{~d} y / 42 \\ & =\left[y^{5 / 2}\right]_{1}^{16} / 105=1023 / 105 \\ & =341 / 35 \text { or } 9.74 \end{aligned}$	2	M1 A1	

Question	Answer	Marks	Partial Marks	Guidance

Page 12 of 16
© Cambridge International Examinations 2016

Question	Answer	Marks	Partial Marks	Guidance
	Correct conclusion : There is non-zero correlation	1	DA1	$(\mathrm{AEF}, \operatorname{dep~A1*,~B1*)}$

Question	Answer		Marks	Partial Marks	Guidance
10E	Find MI of lamina about Q : $I_{\text {lamina }}=1 / 3 m\left\{(3 a)^{2}+(3 a / 2)^{2}\right\}+m(9 a / 2)^{2}$	2		M1 A1	$\left[=(15 / 4+81 / 4) m a^{2}=24 m a^{2}\right]$
	State or find MI of rod about Q : $I_{\mathrm{rod}}=(1 / 3+1) M(3 a / 2)^{2}\left[=3 M a^{2}\right]$	1		B1	
	Sum to find MI of object about Q : $\begin{aligned} & I_{1}=24 m a^{2}+3 M a^{2} \\ & =3(8 m+M) a^{2} \end{aligned}$	1		A1	A.G.
	Find MI of object about mid-point of $P Q$: $\begin{aligned} & I_{2}=\left(15 / 4+3^{2}\right) m a^{2}+1 / 3 M(3 a / 2)^{2} \\ & =(51 / 4) m a^{2}+3 / 4 M a^{2} \\ & =3 / 4(17 m+M) a^{2} \end{aligned}$	2		M1 A1	A.G.
	Use eqn of circular motion to find $\mathrm{d}^{2} \theta / \mathrm{d} t^{2}$ for axis l_{1} : $\begin{aligned} & {[-] I_{1} \mathrm{~d}^{2} \theta / \mathrm{d} t^{2}=m g \times(9 a / 2) \sin \theta+M g \times(3 a / 2) \sin \theta} \\ & \quad[=(9 m / 2+3 M / 2) g a \sin \theta] \end{aligned}$	2		M1 A1	
	[Approximate $\sin \theta$ by θ and] find ω_{1}^{2} in SHM eqn: $\omega_{1}^{2}=(3 m+M) g / 2(8 m+M) a$	1		M1	
	Find period T_{1} for axis l_{1} from $2 \pi / \omega_{1}$: $T_{1}=2 \pi \sqrt{ }\{2(8 m+M) a /(3 m+M) g\}$	1		A1	(AEF)
	Use eqn of circular motion to find $\mathrm{d}^{2} \theta / \mathrm{d} t^{2}$ for axis l_{2} : $[-] I_{2} \mathrm{~d}^{2} \theta / \mathrm{d} t^{2}=m g \times 3 a \sin \theta$	1		M1	
	[Approximate $\sin \theta$ by θ and] find $\omega_{2}{ }^{2}$ in SHM eqn: $\omega_{2}^{2}=4 m g /(17 m+M) a$	1		M1	
	Find period T_{2} for axis l_{2} from $2 \pi / \omega_{2}$: $T_{2}=2 \pi \sqrt{ }\{(17 m+M) a / 4 m g\}$	1		A1	(AEF)
	Verify that $T_{1}=T_{2}$ when $m=M:(\mathrm{AEF})$ $T_{1}=2 \pi \sqrt{ }(18 a / 4 g)=T_{2}$	1		B1	[Taking $m=M$ throughout $2^{\text {nd }}$ part can earn: M1 A1 M1 A0 M1 M1 A0 B1 (max 6/8)]
			8		

Page 14 of 16
© Cambridge International Examinations 2016

Question	Answer	Marks	Partial Marks	
	State hypotheses $(\mathrm{B} 0$ for $\bar{x} \ldots)$, e.g.: $\mathrm{H}_{0}: \mu_{X}=\mu_{Y}, \mathrm{H}_{1}: \mu_{X} \neq \mu_{Y}$	Guidance		

Question	Answer	Marks	Partial Marks	Guidance

[^0]: MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{ }$ " marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR-2 penalty may be applied in particular cases if agreed at the coordination meeting

 PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

