

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

0 1 2 3 4 5 6 7 8 9

FURTHER MATHEMATICS

9231/01

Paper 1 Further Pure Mathematics 1

For examination from 2020

SPECIMEN PAPER 2 hours

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].

This document has 16 pages. Blank pages are indicated.

© UCLES 2017 [Turn over

	$f(r-1) - f(r) = \frac{2}{r(r+1)(r+2)}$.	[2
	r (r · 1)(r · 2)	
	n 1	
(b)	Hence find $\sum_{r=1}^{n} \frac{1}{r(r+1)(r+2)}.$	[3
	∞ 1	
(c)	Deduce the value of $\sum_{r=1}^{\infty} \frac{1}{r(r+1)(r+2)}$.	[1

Pr	rove, by mathematical induction, that $\phi(n)$ is divisible by 8 for every positive integer n .	
•••		
•••		
•••		
•••		
•••		
•••		
•••		
•••		
•••		
•••		
		•••••

[3]

The curve *C* has polar equation $r = 2 + 2 \cos \theta$, for $0 \le \theta \le \pi$.

3

(a) Sketch *C*.

(h)		
(D)	Find the area of the region enclosed by C and the initial line.	[
(D)	Find the area of the region enclosed by <i>C</i> and the initial line.	
(b)	Find the area of the region enclosed by <i>C</i> and the initial line.	
(0)	Find the area of the region enclosed by <i>C</i> and the initial line.	[.
(U)	Find the area of the region enclosed by <i>C</i> and the initial line.	[.
(U)	Find the area of the region enclosed by <i>C</i> and the initial line.	[.
(10)	Find the area of the region enclosed by <i>C</i> and the initial line.	
(10)		
(0)		
(0)		[4
(0)		
(0)		

Show that the Cartesian equation of C can be expressed as $4(x^2 + y^2) = (x^2 + y^2 - 2x)^2$.

4 The cubic equation

$$z^3 - z^2 - z - 5 = 0$$

has roots α , β and γ .

show that the value of $\alpha^3 + \beta^3 + \gamma^3$ is 19.	[4

Find the value of $\alpha^4 + \beta^4 + \gamma^4$.
Find a cubic equation with roots $\alpha + 1$, $\beta + 1$ and $\gamma + 1$, giving your answer in the form
$px^3 + qx^2 + rx + s = 0,$
where p , q , r and s are constants to be determined.
where p, q, r and s are constants to be determined.

_	CC1					1
5	The	matrix	Δ	10	ouven	hī
J	1110	mania	1 A	IJ	ZI V CII	v

$$\mathbf{A} = \begin{pmatrix} 5 & k \\ -3 & -4 \end{pmatrix}$$

(a)	Find the value of k for which A is singular.	[2]
It is	now given that $k = 6$ so that $\mathbf{A} = \begin{pmatrix} 5 & 6 \\ -3 & -4 \end{pmatrix}$.	
(b)	Find the equations of the invariant lines, through the origin, of the transrepresented by \mathbf{A} .	sformation in the x - y plane [6]

•••••		
•••••		•••••
•••••		
•••••		••••••
	triangle DEF in the x-y plane is transformed by A onto triangle PQR .	
	triangle DEF in the x - y plane is transformed by \mathbf{A} onto triangle PQR . Given that the area of triangle DEF is $10\mathrm{cm}^2$, find the area of triangle PQR .	
(i)	Given that the area of triangle <i>DEF</i> is 10 cm ² , find the area of triangle <i>PQR</i> .	
(i)		
(i)	Given that the area of triangle <i>DEF</i> is 10 cm ² , find the area of triangle <i>PQR</i> .	
(i)	Given that the area of triangle <i>DEF</i> is 10 cm ² , find the area of triangle <i>PQR</i> .	
(i)	Given that the area of triangle <i>DEF</i> is 10 cm ² , find the area of triangle <i>PQR</i> .	
	Given that the area of triangle <i>DEF</i> is 10 cm ² , find the area of triangle <i>PQR</i> .	
(i)	Given that the area of triangle <i>DEF</i> is 10 cm ² , find the area of triangle <i>PQR</i> .	

6	The position vectors of the points A , B , C , D are	

$$2\mathbf{i} + 4\mathbf{j} - 3\mathbf{k}$$
, $-2\mathbf{i} + 5\mathbf{j} - 4\mathbf{k}$, $\mathbf{i} + 4\mathbf{j} + \mathbf{k}$, $\mathbf{i} + 5\mathbf{j} + m\mathbf{k}$,

respectively, where m is an integer. It is given that the shortest distance between the line through A and B and the line through C and D is B.

hat the only possible value of m is 2.	

					•••••	
		•				
		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	
					• • • • • • • • • • • • • • • • • • • •	
					•••••	
		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •
Find the sho	rtest distance	of D from the	e line through A	and <i>C</i> .		
Find the shor	rtest distance	of D from the	e line through A	1 and <i>C</i> .		
Find the shor	rtest distance	of D from the	e line through A	1 and <i>C</i> .		
Find the shor	rtest distance	of D from the	e line through A	1 and <i>C</i> .		
Find the shor	rtest distance	of D from the	e line through A	1 and C.		
Find the shor	rtest distance	of D from the	e line through A	1 and C.		
Find the shor	rtest distance	of D from the	e line through A	1 and C.		
Find the shor	rtest distance	of D from the	e line through A	1 and C.		
Find the shor	rtest distance	of D from the	e line through A	1 and C.		
			e line through A			

	that the acu	5					(√3)		
	•••••	•••••							
				•••••					
•••••			•••••				•••••		•••••
•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••		•••••			
									•••••
	•••••	• • • • • • • • • • • • • • • • • • • •							
•••••	•••••		•••••	•••••	••••••	•••••	••••••		••••••
•••••	•••••		•••••	•••••	••••••	•••••	••••••		••••••
•••••		• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	••••••	•••••	••••••	••••••

(a)	State the equations of the asymptotes of <i>C</i> .	
	25	
(b)	Show that $y \le \frac{25}{12}$ at all points on C .	

(c)	Find the coordinates of any stationary points of <i>C</i> .	[3]
		· • • • • • •
		· • • • • • •
		· • • • • • •
		· • • • • • •
		· • • • • • •
		· • • • • • •
		· • • • • • •
(d)	Sketch C , stating the coordinates of any intersections of C with the coordinate axes and asymptotes.	the [4]

(e)	Sketch the curve with equation $y =$	$=$ $\left \frac{2x^2}{x^2} \right $	$\frac{-3x-2}{-2x+1}$	and	find	the	set	of v	alues	of x	for wh	ich
	$\left \frac{2x^2 - 3x - 2}{x^2 - 2x + 1} \right < 2.$											[4]
					•••••	•••••		•••••				
		•••••			•••••	•••••		•••••				
		•••••								•••••		••••
		•••••										
		•••••		•••••	•••••	•••••	•••••	•••••				
				•••••	•••••	•••••		•••••		•••••		
				•••••	•••••	•••••	•••••	•••••		•••••		••••

Additional page

If you use the following lined page to complete the answer(s) to any question(s), the question number must be clearly shown.						

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.