Cambridge International Examinations

Cambridge International General Certificate of Secondary Education
Cambriage
GCSE

ADDITIONAL MATHEMATICS

0606/22
Paper 2
May/June 2017
MARK SCHEME
Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the May/June 2017 series for most
Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method marks, awarded for a valid method applied to the problem.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.

B Mark for a correct result or statement independent of Method marks.
When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations
awrt answers which round to
cao correct answer only
dep dependent
FT follow through after error
isw ignore subsequent working
nfww not from wrong working
oe or equivalent
rot rounded or truncated
SC Special Case
soi seen or implied

Question	Answer	Marks	Partial Marks
2	Alternative method 1: dealing with the negative index soi	B1	
	correctly squaring with at least 3 terms in the numerator and denominator $\frac{3-\sqrt{5}}{1+\sqrt{5}} \times \frac{3-\sqrt{5}}{1+\sqrt{5}}=\frac{9-6 \sqrt{5}+5}{1+2 \sqrt{5}+5}$ oe	B1	
	rationalising their $\left(\frac{14-6 \sqrt{5}}{6+2 \sqrt{5}} \times \frac{6-2 \sqrt{5}}{6-2 \sqrt{5}}\right)$ oe	M1	
	multiplying out correctly; at least 3 terms in the numerator but condone a single value for the denominator $\frac{84-64 \sqrt{5}+60}{36-20}$ oe	A1	
	$9-4 \sqrt{5}$ cao	A1	
	Alternative method 2 dealing with the negative index soi	B1	
	$9-6 \sqrt{5}+5=(a+b \sqrt{5})(1+2 \sqrt{5}+5)$	M1	
	$\begin{aligned} & 14=6 a+10 b \\ & -6=2 a+6 b \end{aligned} \text { oe }$	A1	
	$a=9$ cao	A1	
	$b=-4$ cao	A1	
	Alternative method 3 for dealing with the negative index soi	B1	
	$\begin{aligned} & {[3-\sqrt{5}=(c+d \sqrt{5})(1+\sqrt{5}) \text { leading to }]} \\ & c+5 d=3 \\ & c+d=-1 \end{aligned}$	M1	
	$c=-2$ and $d=1$	A1	
	$(-2+\sqrt{5})^{2}=4-4 \sqrt{5}+5$	A1	
	$9-4 \sqrt{5}$ cao	A1	

Question	Answer	Marks	Partial Marks
3	Correctly finding a correct linear factor or root	B1	from a valid method, e.g. factor theorem used or long division or synthetic division: $\begin{gathered} \mathrm{f}(2)=10\left(2^{3}\right)-21\left(2^{2}\right)+4=0 \\ 10 x^{2}-x-2 \\ \text { or } x - 2 \longdiv { 1 0 x ^ { 3 } - 2 1 x ^ { 2 } + 4 } \\ \frac{10 x^{3}-20 x^{2}}{-x^{2}} \\ \frac{-x^{2}+2 x}{-2 x+4} \\ \frac{-2 x+4}{0} \end{gathered}$ or $\begin{gathered} 2 \\ \end{gathered} \begin{array}{lrrr} 10 & -21 & 0 & 4 \\ \downarrow & 20 & -2 & -4 \\ 10 & -1 & -2 & 0 \end{array}$
	correct linear factor stated or implied by, e.g. $(x-2)\left(10 x^{2}-x-2\right)$	B1	$(x-2) \text { or }(2 x-1) \text { or }(5 x+2)$ do not allow $\left(x-\frac{1}{2}\right)$ or $\left(x+\frac{2}{5}\right)$
	Correct quadratic factor $\left(10 x^{2}-x-2\right)$ or $\left(5 x^{2}-8 x-4\right)$ or $\left(2 x^{2}-5 x+2\right)$	B2	found using any valid method; B1 for any 2 terms correct
	$(x-2)(2 x-1)(5 x+2)$ mark final answer	B1	must be written as a correct product of all 3 linear factors; only award the final B1 if all previous marks have been awarded
			If quadratic factor is not found but correct remaining linear factors are found using e.g. the factor theorem or long division or synthetic division etc. with correct, sufficient, complete working to justify that no calculator has been used allow: B1 for correctly finding a correct linear factor or root B1 for a correct linear factor stated or implied SC3 for the full, complete and correct working to find the remaining two linear factors and arrive at the correct product of 3 linear factors

Question	Answer	Marks	Partial Marks
4	$\frac{\mathrm{d} y}{\mathrm{~d} x}=6 x-7 \text { soi }$	B1	
	$m_{\text {normal }}=-\frac{1}{5} \text { soi }$	B1	finds or uses correct gradient of normal
	$m_{\text {tangent }}=5$ soi or $(6 x-7)\left(-\frac{1}{5}\right)=-1$ oe	M1	uses $m_{1} m_{2}=-1$ with numerical gradients
	$6 x-7=5$ oe $\Rightarrow x=2$	A1	
	$y=9$	A1	
	$k=47$	A1	
	Alternative method $m_{\text {normal }}=-\frac{1}{5}$	B1	
	$m_{\text {tangent }}=5$	M1	
	$3 x^{2}-12 x+11-c=0$ oe	A1	
	solving $3 x^{2}-12 x+12=0$ oe to find $x=2$	A1	
	$y=9$	A1	
	$k=47$	A1	
5(i)	$\left(\right.$ their $\left.2 x^{4}\right)(0.2-\ln 5 x)+0.4 x^{5}\left(\right.$ their $\left.\frac{-5}{5 x}\right)$ oe or their $0.4 x^{4}-\left(\left(\right.\right.$ their $\left.2 x^{4}\right) \ln 5 x+0.4 x^{5}\left(\right.$ their $\left.\left.\frac{5}{5 x}\right)\right)$ oe	M1	clearly applies correct form of product rule
	$-2 x^{4} \ln 5 x$ isw	A1	nfww
5(ii)	$3 \ln 5 x$ or $\ln 5 x+\ln 5 x+\ln 5 x$	B1	

Question	Answer	Marks	Partial Marks
5(iii)	$\frac{3}{-2} \int\left(-2 x^{4} \ln 5 x\right) \mathrm{d} x$ oe	M1	FT $k=2$ from (i) allow for $\frac{3}{2} \int\left(2 x^{4} \ln 5 x\right) \mathrm{d} x$ or, when $k=-2$, for $\begin{aligned} & \int\left(x^{4} \ln 5 x\right) \mathrm{d} x=-0.2 x^{5}(0.2-\ln 5 x) \\ & \text { or }-\frac{2}{3} \int\left(3 x^{4} \ln 5 x\right) \mathrm{d} x=0.4 x^{5}(0.2-\ln 5 x) \mathrm{oe} \end{aligned}$ or, when FT $k=2$, for $\begin{aligned} & \int\left(x^{4} \ln 5 x\right) \mathrm{d} x=0.2 x^{5}(0.2-\ln 5 x) \\ & \text { or } \frac{2}{3} \int\left(3 x^{4} \ln 5 x\right) \mathrm{d} x=0.4 x^{5}(0.2-\ln 5 x) \text { oe } \end{aligned}$
	$-\frac{3}{2}\left(0.4 x^{5}(0.2-\ln 5 x)\right)[+c]$ oe isw cao	A1	nfww; implies M1 An answer of $0.6 x^{5}(0.2-\ln 5 x)$ following $k=2$ from (i) implies M1 A0
6	Uses $b^{2}-4 a c$	M1	
	$(p-q)^{2}-4(p)(-q)$	A1	implies M1
	$p^{2}+2 p q+q^{2}$	M1	correctly simplifies
	$(p+q)^{2} \geqslant 0$ oe cao isw	A1	
	Alternative method $(p x-q)(x+1)[=0] \text { or } \frac{-(p-q) \pm \sqrt{(p+q)^{2}}}{2 p}$	M2	or M1 for $(p x+q)(x-1) \quad[=0]$ or $\frac{-(p-q) \pm \sqrt{(p-q)^{2}-4(p)(-q)}}{2 p}$
	$x=\frac{q}{p}, \quad x=-1$	A1	
	for conclusion, e.g. p and q are real therefore $\frac{q}{p}$ is real [and -1 is real]	A1	
7(a)(i)	7	B1	
7(a)(ii)	$\frac{1}{7} \text { or } \frac{1}{\text { their } 7}$	B1	FT their 7 must not be 1 if following through

Question	Answer	Marks	Partial Marks
7(b)	$y=81^{-\frac{1}{4}}$ or $y=3^{-1}$ or $y=9^{-\frac{1}{2}}$ oe	M1	Anti-logs
	$y=\frac{1}{3}$ only or $0.333[3 \ldots$.$] only$	A1	nfww; implies the M1; $y=\ldots$ must be seen at least once If M0 then $\mathbf{S C 1}$ for e.g. $81^{-\frac{1}{4}}=\frac{1}{3}$ as final answer
7(c)	$\frac{2^{5\left(x^{2}-1\right)}}{\left(2^{2}\right)^{x^{2}}}$ oe or $\frac{4^{\frac{5}{(2}\left(x^{2}-1\right)}}{4^{x^{2}}}$ oe or $\frac{32^{x^{2}} \times 32^{-1}}{4^{x^{2}}}$ or $\log 32^{x^{2}-1}-\log 4^{x^{2}}=\log 16$ oe	B1	converts the terms given left hand side to powers of 2 or 4 ; may have crossmultiplied or separates the power in the numerator correctly or applies a correct log law
	$2^{3 x^{2}-5}=16$ oe $\Rightarrow 3 x^{2}-5=4 \mathrm{oe}$ or $4^{\frac{3}{2} x^{2}-\frac{5}{2}}=16$ oe $\Rightarrow \frac{3}{2} x^{2}-\frac{5}{2}=2 \mathrm{oe}$ or $\frac{8^{x^{2}}}{32}=16$ oe $\Rightarrow x^{2} \log 8=\log 512$ oe or $\left(x^{2}-1\right) \log 32-x^{2} \log 4=\log 16$ oe	M1	combines powers and takes logs or equates powers; or brings down all powers for an equation already in logs condone omission of necessary brackets for M1; condone one slip
	$\begin{aligned} & {[x=] \pm \sqrt{3} \text { isw cao }} \\ & \text { or } \pm 1.732050 \ldots \text { rot to } 3 \text { or more figs. isw } \end{aligned}$	A1	
8(i)	$y-8=-\frac{8}{12}(x-(-8))$ oe isw or $y[-0]=-\frac{8}{12}(x-4)$ oe isw or $3 y=-2 x+8$ oe isw	B2	B1 for $m_{A B}=-\frac{8}{12}$ oe or M1 for $\frac{8-0}{-8-4}$ oe
8(ii)	$(-8-4)^{2}+(8[-0])^{2}$ oe	M1	any valid method
	$\sqrt{208}$ isw or $4 \sqrt{13}$ isw or $14.4222051 \ldots$ rot to 3 or more sf	A1	implies M1 provided nfww

Question	Answer	Marks	Partial Marks
8(iii)	[coordinates of $D=$] $(-2,4)$ soi	B1	If coordinates of D not stated then a calculation for $m_{C D}$ or a relevant length with the coordinates clearly embedded must be shown to imply B1
	Gradient methods: $\left[m_{C D}=\frac{7-\text { their } 4}{0-\text { their }(-2)}=\right] \text { their }\left(\frac{3}{2}\right)$	M1	or Length of sides methods: finds or states $\quad A C^{2}=65$ or $A C=\sqrt{65}$ or $A C^{2}=(-8-0)^{2}+(8-7)^{2}$ oe or $A C=\sqrt{(-8-0)^{2}+(8-7)^{2}}$ oe and $C D^{2}=$ their 13 or $C D=$ their $\sqrt{13}$ or $C D^{2}=(0-\text { their }(-2))^{2}+(7-\text { their } 4)^{2}$ oe or $C D=\sqrt{(0-\text { their }(-2))^{2}+(7-\text { their } 4)^{2}}$ oe and $A D^{2}=$ their 52 or $A D=$ their $2 \sqrt{13}$ or $A D^{2}=(-8-\text { their }(-2))^{2}+(8-\text { their } 4)^{2}$ or $A D=\sqrt{(-8-\text { their }(-2))^{2}+(8-\text { their } 4)^{2}}$ or uses a valid method with their coordinates of D to find the exact area of the triangle and equates to $\frac{1}{2}(A D)(C D) \sin (A D C)$
	states $\frac{3}{2} \times\left(-\frac{8}{12}\right)=-1$ oe or $\frac{3}{2}$ is the negative reciprocal of $-\frac{2}{3}$ oe or finds the equation of the perpendicular bisector of $A B$ as $y=\frac{3}{2} x+7$ independently of C and states that C lies on this line.	A1	applies Pythagoras to confirm, using integer values, that $65=13+52$ or finds e.g. $A C=\sqrt{65}$ using $\sqrt{(2 \sqrt{13})^{2}+(\sqrt{13})^{2}}$ or solves $\frac{1}{2}(2 \sqrt{13})(\sqrt{13}) \sin A D C=13$ or $\begin{aligned} (\sqrt{65})^{2}=(2 \sqrt{13})^{2} & +(\sqrt{13})^{2} \\ & -2(2 \sqrt{13})(\sqrt{13}) \cos A D C \end{aligned}$ to show $A D C$ is a right angle
8(iv)	$\binom{-4}{1}$ or $-4 \mathbf{i}+\mathbf{j}$	B1	condone coordinates

Question	Answer	Marks	Partial Marks
8(v)	Full valid method e.g. for showing that e.g. $\overrightarrow{C B}=\binom{4}{0}-\binom{0}{7}=\binom{4}{-7}$ or showing that e.g. $\overrightarrow{A C}=\binom{0}{7}-\binom{-8}{8}=\binom{8}{-1} \mathrm{oe}$ and $\overrightarrow{E B}=\binom{4}{0}-\binom{-4}{-1}=\binom{8}{-1}$ oe or comparing gradients of both pairs of opposite sides and showing they are pairwise the same or comparing the lengths of both pairs of opposite sides and showing that they are pairwise the same or showing that length $A C=$ length $A E$ or that the length $B C=$ length $B E$ or comparing the gradients and lengths of a pair of opposite sides or showing that D is the midpoint of $C E$ or showing that length $D C=$ length $D E$ and that C, D and E are collinear	B2	B1 for incomplete method e.g. for stating that $\overrightarrow{C B}=\binom{4}{-7}$ or $\overrightarrow{A C}=\binom{8}{-1}=\overrightarrow{E B}$ or just showing that one pair of opposite sides is parallel or has the same length or just showing that length $D C=$ length $D E$ or just showing that C, D and E are collinear
9(i)	$2(x-1.5)^{2}+0.5$ isw	B3	or B3 for $a=2$ and $b=1.5$ and $c=0.5$ provided not from wrong format isw or B2 for $2(x-1.5)^{2}+c$ where $c \neq 0.5$ or $a=2$ and $b=1.5$ or $\mathbf{S C 2}$ for $2(x-1.5)+0.5$ or $2\left((x-1.5)^{2}+\frac{1}{4}\right)$ seen or B1 for $(x-1.5)^{2}$ seen or for $b=1.5$ or for $c=0.5$ or SC1 for 3 correct values seen in incorrect format e.g. $2(x-1.5 x)+0.5$ or $2\left(x^{2}-1.5\right)+0.5$

Question	Answer	Marks	Partial Marks
9 (ii)		B3	B1 for correct graph for f over correct domain or correct graph for $f-1$ over correct domain B1 for vertex marked for f or $\mathrm{f}-1$ and intercept marked for f or $\mathrm{f}-1$ B1 for idea of symmetry - either symmetrical by eye, ignoring any scale or line $y=x$ drawn and labelled Maximum of 2 marks if not fully correct
9 (iii)	$\frac{x-0.5}{2}=(y-1.5)^{2}$	M1	FT their a, b, c, provided their $a \neq 1$ and a, b, c are all non-zero constants or $\frac{y-0.5}{2}=(x-1.5)^{2}$ and reverses variables at some point
	$\mathrm{f}^{-1}(x)=1.5-\sqrt{\frac{x-0.5}{2}} \mathrm{oe}$	A1	must have selected negative square root only; condone $y=\ldots$ etc.; must be in terms of x
			If M0 then $\mathbf{S C} \mathbf{2}$ for $\mathrm{f}^{-1}(x)=\frac{6-\sqrt{8 x-4}}{4}$ oe or SC1 for $\mathrm{f}^{-1}(x)=\frac{-(-6) \pm \sqrt{36-4(2)(5-x)}}{2(2)} \mathrm{oe}$
	$x \geqslant \frac{1}{2}$ oe	B1	
10(i)	$\sin ^{-1}\left(\frac{3}{4}\right)$ soi	M1	implied by $0.848[06 \ldots]$
	$0.848[06 \ldots]$ rot to 3 or more figs or 2.29 [$35 \ldots$...] rot to 3 or more figs	M1	implied by a correct answer of acceptable accuracy
	$0.544486 \ldots$ rot to 3 or more figs isw	A1	
	1.03 or $1.02630 \ldots$ rot to 4 or more figs isw	A1	Maximum 3 marks if extra angles in range; no penalty for extra values outside range $0 \leqslant x \leqslant \frac{\pi}{2}$

Question	Answer	Marks	Partial Marks
10(ii)	Correctly uses $\tan ^{2} y=\sec ^{2} y-1$ and/or $\frac{\sin y}{\cos y}$ and $\sin ^{2} y=1-\cos ^{2} y$	M1	for using correct relationship(s) to find an equation in terms of a single trigonometric ratio
	$\begin{aligned} & 3 \sec ^{2} y-14 \sec y-5=0 \\ & \Rightarrow(3 \sec y+1)(\sec y-5) \end{aligned}$ or $5 \cos ^{2} y+14 \cos y-3=0$ $\Rightarrow(5 \cos y-1)(\cos y+3)$	DM1	for factorising or solving their 3-term quadratic dependent on the first M1 being awarded
	$[\cos y=-3] \cos y=\frac{1}{5}$	A1	
	78.5 or $78.4630 \ldots$ rot to 2 or more decimal places isw	A1	
	281.5 or $281.536 \ldots$ rot to 2 or more decimal places isw	A1	Maximum 4 marks if extra angles in range; no penalty for extra values outside range $0 \leqslant x \leqslant 360$
11(i)	$\frac{x^{4}}{4}+\frac{4 x^{3}}{3}-\frac{5 x^{2}}{2}+5 x[+c] \text { isw }$	B2	B1 for any 3 correct terms
11(ii)	$x^{3}+4 x^{2}-5 x+5=5$ and rearrange to $x\left(x^{2}+4 x-5\right)=0$ oe soi	B1	
	Solves their $x^{2}+4 x-5[=0]$ soi	M1	
	$x=-5, x=1$ soi	A1	
	$O E A B=25, O B C D=5$	A1	

PUBLISHED

Question	Answer	Marks	Partial Marks
11(iii)	Correct or correct FT substitution of 0, their -5 seen in $\left[\frac{x^{4}}{4}+\frac{4 x^{3}}{3}-\frac{5 x^{2}}{2}+5 x\right]_{\text {their }-5}^{0}$	M1	dependent on at least B1 in (i)
	Correct or correct FT substitution of their 1,0 seen $\text { in }\left[\frac{x^{4}}{4}+\frac{4 x^{3}}{3}-\frac{5 x^{2}}{2}+5 x\right]_{0}^{\text {hheir } 1}$	M1	dependent on at least B1 in (i)
	their $\frac{1175}{12}$ - their $O E A B+$ their $O B C D-$ their $\frac{49}{12}$ oe	M1	for the strategy needed to combine the areas; may be in steps; $97.91 \dot{6}-25+5-4.08 \dot{3}$
	$\frac{886}{12}$ oe or $73 \frac{5}{6}$ oe or $73.8 \dot{3}$ rot to 3 or more sig figs	A1	all method steps must be seen; not from wrong working
			If M0 then allow SC3 for $\begin{aligned} & \int_{-5}^{0}\left(x^{3}+4 x^{2}-5 x\right) \mathrm{d} x-\int_{0}^{1}\left(x^{3}+4 x^{2}-5 x\right) \mathrm{d} x \text { oe } \\ & =\left[\frac{x^{4}}{4}+\frac{4 x^{3}}{3}-\frac{5 x^{2}}{2}\right]_{-5}^{0}-\left[\frac{x^{4}}{4}+\frac{4 x^{3}}{3}-\frac{5 x^{2}}{2}\right]_{0}^{1} \\ & =\left[0-\left(\frac{625}{4}-\frac{500}{3}-\frac{125}{2}\right)\right]-\left[\left(\frac{1}{4}+\frac{4}{3}-\frac{5}{2}\right)-0\right] \\ & =\frac{443}{6} \text { oe } \end{aligned}$ or SC2 for $\begin{aligned} & \int_{\text {their }(-5)}^{0}\left(x^{3}+4 x^{2}-5 x\right) \mathrm{d} x-\int_{0}^{\text {their } 1}\left(x^{3}+4 x^{2}-5 x\right) \mathrm{d} x \text { oe } \\ & =\left[\frac{x^{4}}{4}+\frac{4 x^{3}}{3}-\frac{5 x^{2}}{2}\right]_{\text {their }(-5)}^{0}-\left[\frac{x^{4}}{4}+\frac{4 x^{3}}{3}-\frac{5 x^{2}}{2}\right]_{0}^{\text {their } 1} \\ & =[F(0)-F(\text { their }(-5))]-[F(\text { their } 1)-F(0)] \end{aligned}$
12(i)	$-6(2 x+1)^{-2}$ or $\frac{-6}{(2 x+1)^{2}}$ oe isw	B1	Allow $-3(2 x+1)^{-2} \times 2$ or $\frac{-3 \times 2}{(2 x+1)^{2}}$ oe
	Denominator or $(2 x+1)^{2}$ is positive [and numerator negative therefore $\mathrm{g}^{\prime}(x)$ is always negative] oe	B1	FT their $\mathrm{g}^{\prime}(x)$ of the form $\frac{-k}{(2 x+1)^{2}}$ oe where $k>0$; Allow $(2 x+1)^{-2}$ is always positive
12(ii)	$\mathrm{g}>0$	B1	
12(iii)	$\frac{3 k}{2 x+1}+3$ oe isw	B1	

Question	Answer	Marks	Partial Marks
$12(\mathrm{iv})$	$\frac{3 k}{2(0)+1}+3=5$	B1	
	$k=\frac{2}{3}$ isw	B1	implies the first B1
	$x>-\frac{1}{2}$	B1	

