Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

PHYSICS

0625/32
Paper 3 Core Theory
May/June 2017
MARK SCHEME
Maximum Mark: 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the May/June 2017 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Question	Answer	Marks
1(a)	flexible rule/tape measure/measuring tape	
1(b)(i)	$58.75(\mathrm{~s})$	B1
1(b)(ii)	speed = distance \div time in any form	C1
	$0.85(\mathrm{~m} / \mathrm{s})$	A1
1(b)(iii)	$7.12(\mathrm{~s})$	B1
		Total:

Question	Answer		Marks
2(a)(i)	6500 (g)		B1
2(a)(ii)	density $=$ mass \div volume in any form		B1
	1.3		A1
	$\mathrm{g} / \mathrm{cm}^{3}$		B1
2(b)	density (of brush) is less (than) density of paint		B1
		Total:	5

Question	Answer		Marks
3(a)	weight $=$ mass \times gravitational field strength in any form		C1
	20.0×10.0		C1
	200 (N)		A1
3(b)(i)	moment $=$ force \times (perpendicular) distance (from pivot) in any form		C1
	180.0×2.5		C1
	450 (Nm)		A1
3(b)(ii)	2nd box down ticked decrease the length of the arm holding the sun-shade		B1
		Total:	7

PUBLISHED

Question	Answer	Marks
4(a)	radiation	B1
4(a)(ii)	thermometer near door or B is at higher temperature	B2
	any 2 from: darker colours are better absorbers (of thermal energy) darker colours are better emitters (of thermal energy) white/lighter colours are better reflectors (of thermal energy) white/lighter colours are poorer absorbers (of thermal energy) white/lighter colours are poorer emitters (of thermal energy)	B3
4(b)	any 3 from: cold air is denser (than warm air) cold air will fall the cold air is warmed and expands less dense/warm air rises or replaces the cold air (forming a) convection (current)	Total:

Question	Answer		Marks
5(a)	any two from: more collide with walls more often so pressure is greater (inside bag)		B2
5(b)	density (of sea water) depth (of sea water) (in either order)		B2
5(c)(i)	barometer		B1
5(c)(ii)	3.4 or 1.3 seen		C1
	2.1		C1
	1035.7		A1
		Total:	8

Question	Answer	Marks
$6(a)($ (i)	normal line drawn at 90° to mirror by eye	B1
$6(a)($ ii $)$	reflected ray drawn with $i=r$ by eye	B1
6(a)(iii)	angle of incidence = angle of reflection	B1
6(a)(iv)	Mark is for the explanation linked to candidate's diagram. e.g. if answer is YES they should state that the reflected ray hits/reaches the (other)driver/car or can be seen	
6(b)(i)	ray refracted toward the normal	B1
6(b)(ii)	angle of incidence labelled	B1
	angle of refraction labelled	B1

Question	Answer	Marks
7 7(a)(i)	visible light	B1
	gamma rays	B1
7(a)(ii)	wavelength	B1
	7(b)	(sound) is a longitudinal wave (radio waves are transverse) (sound) needs a medium to be transmitted (but radio waves do not)
7(c)	any four from: only award 4 marks if valid procedure (use tape measure) to measure distance of at least 100 m blocks banged together stopwatch started when blocks are SEEN to hit stopwatch stopped when sound heard time taken recorded/calculated speed = distance \div time	B4
		Total:

Question	Answer	Marks
$8(\mathrm{a})$	At least 2 curves drawn from one end of magnet to the other	B1
	pattern is symmetrical by eye above and below middle of magnet	B1
	Arrow from N to S	B2
	any 2 from: magnet/block/metal placed in coil coil connected to d.c. supply (d.c.) current in coil (for short time)	B1
8(c)	tick in 4th box steel	Total:

Question	Answer	Marks
9(a)	arrow drawn pointing from C to D	B1
	arrow on /near side CD pointing upwards	B1
9(b)	any 2 from: increase (size of) current increase strength of magnet increase number of turns in coil	B2
9(c)(i)	electrons	B1
9(c)(ii)	current is smaller	B1
	(as) resistance of coil/wire is greater	B1
		$\mathbf{7}$

Question	Answer		Marks
10(a)	in any order: cells/battery (connected) incorrectly voltmeter used instead of ammeter thermistor symbol used instead of LDR symbol		B3
10(b)(i)	resistance decreases as brightness increases		B1
10(b)(ii)	$($ resistance at 60\% full brightness) $=2000$ (ohms)		B1
	$\text { resistance }=\text { voltage } \div \text { current in any form e.g. } I=\frac{V}{R}$		C1
	$8.0 \div 2000$		C1
	$4 \times 10^{-3}(\mathrm{~A})$		A1
Total:			8

Question	Answer	Marks
$12(\mathrm{a})$	proton	
	positive or +1	B1
$12(\mathrm{a})($ (ii $)$	tick in third box	B1
	idea of mass being halved, e.9. 0.5	C1
	$0.25(\mathrm{mg})$	A1
		$\mathbf{5}$

